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Remote Agent Experiment Validation

EXTENDED ABSTRACT

Remote Agent is a reusable artificial intelligence (AI)
software system that enables goal-based spacecraft
commanding and robust fault recovery.  The Remote Agent
accepts high level goals from the operators and on-board
software modules such as the autonomous navigator (e.g.
ÒDuring the next week take pictures of the following
asteroids and thrust 90% of the timeÓ). The RA determines a
plan of action that will achieve those goals and carries out
that plan by issuing commands to the spacecraft. The RA
considers the current state of the spacecraft both in planning
how to achieve its goals and in executing that plan. This
allows for robust responses to failures and other
contingencies. The RA detects and responds to failures in
real-time and if necessary generates a new plan for achieve
its remaining goals.

The essential characteristics that differentiate Remote Agent
from traditional flight software are that it is model-based
and goal directed. In traditional software programs and
expert systems, the programmer decides what the result of a
program should be and writes down instructions or rules
that attempt to achieve those results. The computer simply
executes the instructions or fires the rules with no
knowledge of what the intended result was or how it is
achieving it. The term model-based refers to the fact that
Remote Agent is given a model, or general description, of
the behavior and structure of the spacecraft it is controlling.
The term goal-directed refers to the fact that the operator
tells the Remote Agent what the desired goal is. Remote
Agent uses its models and reasoning algorithms to
continuously find actions directed toward the goal, even if
failures or anomalies occur.

The Remote AgentÕs key contributions are as follows:

•  Goal-based commanding. The RA is commanded with
high-level goals as opposed to time-ordered sequences.

•  Low-level commanding.  Spacecraft operators can also
write flexible, high level spacecraft scripts which draw
upon Remote AgentÕs resource management, diagnosis,
and recovery facilities to the extent desired. These
allow the same level of control as sequences, but are
more flexible and can draw on RA capabilities as
appropriate.

•  Closes-loops on-board. The RA considers current
conditions in deciding how to achieve the goals.

•  Fail-operational fault responses. Rather than always
ÒsafingÓ the spacecraft, it first tries to find a way to
achieve the remaining goals in spite of the failure.

•  The knowledge that guides the RAÕs decisions are
encoded in understandable, maintainable declarative
models. The models are spacecraft specific, but the
reasoning engines are mission independent.

Remote Agent Technology

Remote Agent integrates three separate technologies: an on-
board planner-scheduler (PS), a robust plan execution
system (Exec), and a model-based fault diagnosis and
recovery system variously called MIR or MIR (for Mode
Identification and Recovery). These component
technologies are described briefly below.

This pragraph is too abrupt. One of the goals of this report
as I see it is to hand this as a definitive copy of the RA a
technology and the process that we undertook to get to
where we did. If so then we need to explain the motivations
behind the RA.Nothing has been mentioned as to what the
RA does and why.  References at the end of the report
outght to also be here as part of the introduction. A pointer
to the RAX architecture ought to be here also, with a clear
indication of the difference between RA as a technology and
RAX as an instantiation of this technology.

Planner SchedulerÑThe Planner/Scheduler (PS) generates
the plans that RA uses to control the spacecraft. Given the
initial spacecraft state and goals, PS generates a set of
synchronized high-level activities that, once executed, will
achieve the goals. PS consists of a heuristic chronological-
backtracking search engine operating over a constraint-
based temporal database. PS begins with an incomplete plan
and expands it into a complete plan by posting additional
constraints in the database.  These constraints originate from
the goals that the Ground can generate and from constraint
templates (e.g. the camera must be pointed at an asteroid to
take a picture of it) stored in a model of the spacecraft. PS
queries domain-specific planning experts (specialized
software modules such as Deep Space OneÕs navigation
system) to access information that is not in its model..

Smart ExecutiveÑExec is a reactive, goal-achieving, control
system that is responsible for:

•  Requesting and executing plans from the planner.
•  Requesting/Executing failure recoveries from Livingstone
•  Executing goals and commands from human operators.
•  Managing system resources.
•  Configuring system devices.
•  System-level fault protection.
•  Reach and maintain safe-modes as necessary.

Exec is goal-oriented rather than command-oriented. We
define a goal as a state of the system being controlled that
must be maintained for a specified length of time. As a
simple example, consider the goal: keep device A on from
time x to time y. If Exec were to detect that device A is off
during that period, it would perform all the commands
necessary to turn it back on. Exec controls multiple
processes in order to coordinate the simultaneous execution
of multiple goals that are often inter-dependent. In order to
execute each goal, Exec uses a model-based approach to
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create a command procedure, which is often complex,
designed to robustly achieve the goal.

Having "Livingstone" as a heading and talking about MIR
without clarifying that they're one and the same is
confusing.

LivingstoneÑThe MIR inference engine provides mode
identification (diagnosis) and mode reconfiguration
(recovery) functionality. To track the state of each
component (called a mode) in the spacecraft MIR
eavesdrops on commands that are sent to the spacecraft
hardware by Exec. As each command is executed, MIR
receives observations from spacecraftÕs sensors, abstracted
by monitors in the spacecraftÕs control software. MIR
combines these commands and observations with
declarative models of the spacecraft components to
determine the current state of the system and report it to
Exec. If failures occur, MIR uses the same model to find a
repair or workaround that allows the plan to continue
execution.

The key idea underlying model-based diagnosis is that a
combination of component modes is a possible description
of the current overall state of the spacecraft only if the set of
models associated with these modes is consistent with the
observed sensor values. This method does not require that
all aspects of the spacecraft state are directly observable,
providing an elegant solution to the problem of limited
observability.

Why are we talking about risk without talking about IN
DEPTH about a. testing b. validation c. advantages of the
model based approach ? This is plain silly.

Risks

The Remote Agent poses the same kinds of risks as
conventional flight software: if the RA makes an incorrect
decision due to a software bug or incorrect knowledge in the
domain model it could endanger the spacecraft, or even lose
the mission.

The perceived risk for the Remote Agent is often higher
than for traditional flight software. The reason most often
cited is that the RA decides autonomously how to achieve
its high-level goals based on current spacecraft conditions.
This is often perceived as risky, since it is harder to predict
what the spacecraft will do. However, this behavior is not
qualitatively different from what fault protection or attitude
control do now.  They all command the spacecraft based on
current state information. The behavior of the RA can be
predicted, within an envelope, just as the behavior of ACS
or fault control can be predicted within certain bounds.
Confidence in the RAÕs responses can be obtained through
testing, just as confidence in ACS and fault protection is
obtained now. The only real difference is quantitative: the
RA has a larger range of input conditions and responses.

The RAÕs risks are mitigated in the same way as the risks of
flight software, fault control, and ACS: through good design
and thorough testing. However, this is where the scale of the
RA poses challenges. Fault protection has a short list of
responses that can be tested exhaustively; the RA has
millions. ACS is governed by control laws for which there
are validation methods; the RA is governed by domain
models and reasoning algorithms for which there were no
validation methods.

We developed new validation methods that were suitable for
the scope of the Remote Agent Experiment. These were
effective at finding and eliminating bugs in the domain
knowledge, and no such bugs were encountered during the
experiment. Two bugs in the reasoning engines were
discovered during the experiment. We suggest additional
testing methods that would be able to detect such bugs on
future missions. Testing experiences, lessons, and
suggestions for future missions will be discussed in the
main body of the paper.

Above is a great advertisement for NOT using the RA. It
needs to be rewritten not to emphasize the negatives of the
validation and testing efforts that we undertook (which were
very weak) but to highlight what the technology can do for
risk mitigation. For example, nothing above talks about
domain knowledge validation being easier in a declarative
model based approach that the RA was built on compared to
the conventional model of writing control software which
has embedded domain constraints which are hard to
understand and separate from the control algorithm. This
does nothing to say that such declarative approaches are
actually risk mitigators for long term missions simply for
the reasons mentioned above. When a declarative model is
available it is anticipated that a new mission operator will be
in a much better state to understand the dynamics of the s/c
by looking at the models than by seeing lines of code in a
more conventional approach.

The above section ought to be revised or scrapped
altogether.

Validation Objectives

The validation objectives for RA were broken down into
specific objectives for each of the three engines as follows.

PlannerÑThe validation objectives for the planner were to:
(a) generate plans on-board; (b) reject low-priority,
unachievable goals; (c) replan following a failure; (d)
generate back-to-back plans; and (e) enable modification of
mission goals from ground.

EXECÑThe EXEC validation objectives were to: (a)
provide a low-level commanding interface; (b) initiate on-
board planning; (c) execute plans generated both on-board
and on the ground; (d) recognize and respond to plan
failure; and (e) maintain required properties in the face of
failures.
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LivingstoneÑThe validation objectives for this subsystem
were to: (a) confirm executive command execution; (b)
demonstrate model-based failure detection, isolation, and
recovery; and (c) demonstrate ability to update MIR state
via ground commands.

Test Program and Results

The Remote Agent Experiment (RAX) consisted of using
the RA technology to operate the DS1 spacecraft for several
days. Recall that the RA consists of general-purpose
reasoning engines (EXEC, MIR, Planner), and mission-
specific models that provide the operations knowledge and
constraints that the engines reason about in order to make
decisions and command the spacecraft. For purposes of
validating the RA technology, it was not necessary to
develop models for all of the DS1 subsystems and operating
modes. We developed an operations scenario based on DS1
active cruise mode, and developed the minimum set of
models needed to perform that scenario under all operating
conditions and respond to a selected set of faults.
Developing additional models would have incurred
additional expense without increasing our ability to validate
the RA technology.Above is BOGUS. We didn't develop the
models  for the entire s/c because a. we were hampered by
time and b. we were an experiment. It is premature to say
that it was "not necessary" to develop the full scale model
set. How can we prove this ?

The scenario goals were to execute an IPS thrust arc,
acquire optical navigation images as requested by the
autonomous navigator, and respond to several simulated
faults. The faults included minor ones that could be
responded to without disrupting the current plan, and more
serious faults that required generating a new plan to achieve
the remaining goals. These faults were as follows:

•  MICAS switch stuck-on
•  communication failure on 1553 bus (PASM RT)
•  ACS thruster valve stuck-closed

The RA successfully demonstrated 100% of its validation
objectives during the experiment.

Applicability to future NASA missions

The Remote Agent technology is applicable to any future
NASA mission that desires or requires autonomous
operations. The RA reasoning engines can be used as-is on
future missions.  New domain models would be required for
each mission.
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Remote Agent Experiment Fact Sheet

Validation Objectives
¥Initiate and generate flexible plans on -board

¥Reject low-priority, unachievable goals

¥Execute plans generated both on -board and from Ground

¥Confirm execution of commands

¥Demonstrate model-based failure detection and recovery

¥Maintain required spacecraft states in the face of failures

¥Re-plan following a failure

¥Generate back-to-back plans

¥Modify mission goals from Ground

¥Execute low-level commands from Ground

¥Update estimated spacecraft state database from Ground

Capabilities
¥Robust Goal-based commanding

-Planner expands high-level goals into flexible plans

-Executive decomposes plans into low-level 
spacecraft commands and monitors that the states 
commanded to are achieved and maintained

¥Fail-operational model-based fault recovery

-Livingstone identifies faults and suggests recoveries 
that the Executive uses to continue plan execution

-If necessary, Executive requests the Planner to 
generate a new plan in light of failure

Applicability to future missions
Remote Agent technologies are generally applicable to 
mission that benefit from highly autonomous operation 
and are currently being applied to prototypes of future 
NASA missions including a space-based interferometer 
and an in-situ propellant production plant.

Validation Objectives
¥Initiate and generate flexible plans on -board

¥Reject low-priority, unachievable goals

¥Execute plans generated both on -board and from Ground

¥Confirm execution of commands

¥Demonstrate model-based failure detection and recovery

¥Maintain required spacecraft states in the face of failures

¥Re-plan following a failure

¥Generate back-to-back plans

¥Modify mission goals from Ground

¥Execute low-level commands from Ground

¥Update estimated spacecraft state database from Ground

Capabilities
¥Robust Goal-based commanding

-Planner expands high-level goals into flexible plans

-Executive decomposes plans into low-level 
spacecraft commands and monitors that the states 
commanded to are achieved and maintained

¥Fail-operational model-based fault recovery

-Livingstone identifies faults and suggests recoveries 
that the Executive uses to continue plan execution

-If necessary, Executive requests the Planner to 
generate a new plan in light of failure

Applicability to future missions
Remote Agent technologies are generally applicable to 
mission that benefit from highly autonomous operation 
and are currently being applied to prototypes of future 
NASA missions including a space-based interferometer 
and an in-situ propellant production plant.
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Jet Propulsion Laboratory
1-818-354-2597
douglas.e.bernard@jpl.nasa.gov

Winner of the NASA
1999 Software of the
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INTRODUCTION

Remote Agent is a model-based, reusable artificial
intelligence (AI) software system that enables goal-based
spacecraft commanding and robust fault recovery. This
report describes the Remote Agent technology, its
development and test history and the DS1 flight experiment
in which Remote Agent was validated. Whenever feasible,
this report attempts to give guidance on how Remote Agent
can be fruitfully employed in future science missions. We
also highlight further technology developments and
operational applications of the technologies that we are
currently pursuing.

Technology Overview

The Remote Agent (RA) integrates three separate Artificial
Intelligence technologies: automated planning and
scheduling, robust multi-threaded execution, and model-
based fault diagnosis and recovery.

 

 

Flight 
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Figure 1:Remote Agent architecture

Remote Agent ArchitectureÑThe RA architecture and its
relation to flight software are shown in Figure 1. Viewed as
a black-box, RA issues commands to real-time execution
flight software (FSW) to modify spacecraft state, and
receives data from the spacecraft through a set of monitors
that filter and discretize sensor values.  The RA itself is
comprised of three main components: a Planner/Scheduler
(PS), a Smart Executive (EXEC), and Livingstone, a Mode
Identification and Reconfiguration module also known as
MIR. An additional component, strictly related with PS, is
the Mission Manager (MM). In addition the RA team
provided a clean interface to the rest of the FSW. The RAX
manager (RAXM) mediated all communication between RA
and the flight software and was included from the outset in
the design of the DS1 FSW. The RAXM provided a
messaging conduit between the RA and the rest of the FSW
including interfaces to the Planning Experts, the Monitors
and to the Real Time Sequencer. Using such a mechanism
allowed the RA to be cleanly bundled on top of the FSW
much later in flight and yet also allowed a clear

methodology for testing and validating the software on the
ground.

We now describe the main functionalities provided by RA
and how each individual RA component participate to the
overall picture. We will do so by giving concrete examples
of commanding and operations relative to DS1.

As we will discuss later, RA can operate at different levels
of adjustable autonomy, allowing ground operators to
interact with the spacecraft with immediate commands to
the flight software, if needed. However, one of the most
unique characteristics of RA, and a main difference with
traditional spacecraft commanding, is that ground operators
can communicate with RA at the goal level rather than
having to formulate detailed sequences of timed commands.
Goals are stored in the Mission Manager in a mission profile
covering an extended period of time. In principle, a mission
profile could contain all goals for a mission, requiring no
further uplink from ground. More realistically, mission
operations will want to change goals (e.g., the schedule of
communications with DSN can be modified on a week by
week basis). This can be easily accomplished by uplinking
commands to edit the mission profile. Goals typically
contain very little detail of how they should be achieved.
For example, for the DS1 Remote Agent Experiment the
only goals in the mission profile were ÒPerform AutoNAV
orbit determination (OD) activities for 1 hour every dayÓ
and ÒThrust the IPS engine for at most 12 hoursÓ.

To translate high-level goals into a stream of commands to
flight software, RA follows a two-step process. In the first
step, MM selects goals for the next commanding horizon
(typically covering several days) and sends them to PS. PS
uses its model of the spacecraft to determine which detailed
tasks should be selected and scheduled to achieve the goals.
For example, in order to perform an OD PS determines from
the model that pictures of beacon asteroids need to be taken.
In order to select these asteroids, the model instructs PS to
interrogate the AutoNAV software as a planning expert. In
general, PS will rely on several specialized services
provided by software modules external to RA. In DS1 both
AutoNAV and ACS provided information to PS that was
incorporated into plans. Going back to our example,
observing an asteroid translates, according to the PS model,
into taking a series of images of it with MICAS. Therefore
PS schedules a ÒMICAS take OPNAV imagesÓ task.
Moreover, the model instructs PS that while images of an
asteroid are taken, the attitude of the spacecraft must be
compatible with the MICAS camera pointing at it. If this is
not the case, the PS model instructs PS to schedule an
appropriate turn changing the attitude from the previous one
to the desired one.

The brief example above points out another fundamental
characteristic of all RA components: their fundamental
reliance on explicit, declarative models of the spacecraft.
Although their level of detail varies between the different
components, RA models tend to be fairly abstract and tend
to focus on system level interactions rather than on the
detail operation of individual subsystems or components.
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This has two advantages. Firstly, it provides a method to
capture system level knowledge in a form that is directly
usable to command a spacecraft, without having to go
through the costly and error prone translation of system
requirements into flight software. In the traditional
approach, system requirements are at best translated into
flight rules that can be used to check the validity of
command sequences but not to generate them in the first
place. Secondly, more abstract models are less susceptible
to changes when a detailed understanding of the behavior of
each subsystems is gained during spacecraft development.
Although they need to be adjusted to the new finding, the
abstract models usually  remain structurally unchanged, and
so remain the synthesis procedures that RA component use
to generate command loads.

Going back to our example, once PS has generated a plan
for the next commanding horizon, EXEC receives it and
incorporates it into the queues of tasks that it is currently
executing. Tasks generated by PS tend to be still fairly
abstract. EXECÕs responsibility is to synchronize the
parallel execution of the plan tasks according to the
specifications contained in the plan, and to further
decompose each task, one at a time, into more detailed
steps. This task decomposition eventually results into
individual commands being sent, one at a time, to the flight
software. For example, the abstract task ÒMICAS take
OPNAV imagesÓ is decomposed into commanding MICAS
to take a number of snapshots while checking that MICAS
is kept ÒONÓ during the entire process.

Besides its goal-directed commanding and model-centered
approaches, RA puts particular emphasis on robustness of
execution and flexibility of response to faults. The model
identification (MI) component of MIR observes EXEC
issuing commands, receives sensor observations from
monitors, and uses model-based inference to deduce the
state of the spacecraft and provide feedback to EXEC.  The
other component of MIR, mode reconfiguration (MR),
serves as a recovery expert, taking as input a set of EXEC
constraints to be established or maintained, and
recommends a recovery action to EXEC that will achieve
those constraints. MIR provides both the MI and MR
function using a single core algorithm and a single
declarative model.

Fault protection in RA happens at two different levels.

•  Low-level fault protection loop: This involves EXEC and
MIR in the context of executing a single PS-generated
task. Suppose that EXEC is commanding MICAS power
on in order to ensure that micas is on during the ÒMICAS
take OPNAV imagesÓ PS task. It does so by sending an
appropriate command to the power driver. MI observes
the command and, on the basis of its previous state
estimate and its models, predicts the likely next state in
which the system will be.  This prediction provides a
qualitative description of the sensor readings MIR should
observe from the spacecraft (e.g. the switch sensor and
current sensor should be consistent with MICAS being
on).  If the expected observations are not received, MI

uses its model to hypothesize the most likely cause of the
unexpected observations in terms of failures of the
spacecraftÕs components. The information about the new
state of the spacecraft hardware is sent to EXEC, which
now asks MIR for an action to correct the problem. MIR
now activates MR, which, using the same model,
determines the least-cost system state that satisfies
EXECÕs request and is reachable from the fault mode.
MIR then gives EXEC the first action in a possible
sequence that will take the system to that state. Such a
recovery might involve resetting a device, attempting a
command again, or a complex reconfiguration of the
spacecraft to enable a functionally redundant system.
EXEC executes the recovery action, under the watchful
eye of MIR, and receives further actions from MIR if
needed by the recovery process. When the recovery is
complete, EXEC continues executing the PS task in a
nominal fashion. Note that during this entire process the
original PS task is still active and in a ÒnominalÓ state.
This depends on the time allocated to the task including
enough slack to tolerate variations during execution that
can be handled by low-level fault protection.

•  High-level fault protection loop: this involves EXEC and
PS. Going back to our example, assume that all recovery
actions suggested by MR failed and no more recovery
actions are available. MIR therefore infers that MICAS is
unusable and communicates this to EXEC. This means
that there is no way to execute a command necessary for
the success of the ÒMICAS take OPNAV imageÓ task.
Moreover, the assumed conditions for other tasks that
may be present in the plan in the future may now be
invalidated. Therefore EXEC terminates task execution
with a failure, discards the rest of the plan and
immediately commands the spacecraft to enter an
appropriate ÒRA standbyÓ mode.1 It then activates PS by
communicating to it the current state of the spacecraft and
asks for a new plan. After receiving the initial state from
EXEC and the goals from MM, PS generates a new plan
that achieve the goals as best as possible within the new,
degraded configuration of the spacecraft. When the plan
is ready, PS sends it to EXEC. EXEC now exists for the
ÒRA standbyÓ state and resumes normal operations by
starting the execution of the new plan.

With the above capabilities, RA allows implementation of
fail-operational behaviors under a much broader range that
it is possible in traditional spacecraft commanding.
Traditionally only critical sequences (e.g., Saturn Orbit
Insertion for Cassini) are designed to tolerate a large number
of faults without requiring ÒsafingÓ of the spacecraft. This
depends on the cost of analysis and implementation of these
sequences. Therefore in less critical phases of a fault event
usually requires the intervention of the ground operations
team to correct it. With RA the cost of implementing these

                                                            
1 Note that this is a standby situation only from the
perspective of RA. From the point of view of FSW,  ÒRA
standbyÓ mode is not a fault mode and does not require the
intervention of FSW fault protection.
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scenarios is significantly reduced, making possible an
increase of mission productivity and a reduction of cost of
operations.

Detailed Validation Objectives

Validation of a technology with the complexity and the
pervasive systemic impact of RA required attention to
several different aspects and dimensions.

The first and most obvious objective was to validate the fact
that RA could indeed autonomously command a system as
complex as a spacecraft for an extended period of time. This
translated into the following list of objectives for each RA
component.

PS/MM

•  generate plans on-board the spacecraft
•  reject low-priority unachievable goals
•  replan following a simulated failure
•  enable modification of mission goals from ground.

EXEC

•  provide a low-level commanding interface
•  initiate on-board planning
•  execute plans generated both on-board and on the ground
•  recognize and respond to plan failure

•  maintain required properties in the face of failures.

MIR

•  confirm executive command execution
•  demonstrate model-based failure detection, isolation, and

recovery;

•  demonstrate ability to update Livingstone state via ground
commands.

Other validation objectives addressed the impact of the
introduction of RA into a ÒtraditionalÓ spacecraft software
architecture. From the outset RA was designed to work in
conjunction with existing FSW modules and not to replace
it. As a result the fidelity of control provided by the RA
depends on the scope and detail of the models of the
spacecraft it has. The challenge was to demonstrate that
such cooperative arrangement with FSW could indeed be
carried out. This consisted in modeling within RA only a
specific set of spacecraft subsystems and allowing
conventional techniques of FSW control to deal with the
remaining control modes of the craft. While there are no
software or architectural limitations which would disallow
RA to command all subsystems for an extended period of
time, the fielding of RA on DS1 was also meant to provide a
credible demonstration of the fact that autonomy concepts
could be applied within a well defined scope.

Level Ground System On-Board PS On-Board EXEC

1 Prepare real-time
commands

None None (executed
w/o Exec
involvement)

2 Prepare sequence None Execute
sequence

3 Prepare plan, upload to
EXEC as script

None Execute plan;
ÒScripted modeÓ

4 Prepare plan, upload to
planner as goals

Confirm and pass
thru the planner

Execute plan;
ÒPlanner Mode"

5 Prepare plan including
some unexpanded goals

Complete the
plan

Execute plan

6 Define goals Prepare plan Execute plan

Even within the scope of the autonomy demonstration, it
was important to show that adopting RA was not an Òall or
nothingÓ proposition and that RA could be commanded with
adjustable levels of autonomous operations. Table 1 shows
the possible RA autonomy, all the way from generating low-
level sequencer commands using conventional methods
which are executed by the EXEC onboard (autonomy level
2), to preparing a plan on the ground and uplinking it to the
spacecraft for execution (autonomy level 4), finally to
providing closed-loop planning and execution on the
spacecraft (autonomy level 6). The DS1 autonomy
experiment was designed from the outset to start with level
3 as a confidence building measure and then to migrate to
level 6 on providing adequate confidence of the plans
generation on the ground and execution onboard.

The final set of validation objectives involved the
development process for autonomy software. This involved
a number of separate items:

•  integration of RA with the DS1 flight software, a large
and complex system in itself written in a language (C)
different from the RA (Lisp);

•   adaptation of RA models and scenarios to reflect
operational constraints imposed by the flight team even
late in the development process;

•  achievement of high-level of confidence by the DS1
spacecraft team by going through a rigorous test regimen
dictated by the team on high fidelity testbeds.

We will discuss the level of achievement of achievement of
these validation objectives in the section on the Remote
Agent Experiment.

Performance Envelope

Note that these performance and resource figures refer to
RA as flown on Deep Space 1 in 1999 in Lisp.  Each of the
RA engines has been or is being re-architected and ported to
C or C++.  These new systems may exhibit significantly
different performance characteristics.

•  Memory:  32 Mbytes memory peak, 20 avg.

Table 1: Autonomy levels of RA
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•  CPU:
_ RAX ran at priority level just below that of DS1

sequencer (very low).
_ 20% of CPU when planner is idle (only EXEC and

MIR are running).
_ 45% of CPU while planner is running (planner,

EXEC, and MIR all running).
•  Time to generate plans depends on plan complexity.

RAX plans took 50 to 90 minutes to generate.
•  Telemetry: 10 bits per second, average.

This includes notification as each activity in the plan is
executed, current diagnosis for each device monitored
by MIR, and summary of the plannerÕs plan generation
progress. Similar telemetry would be needed for future
science missions.

•  File space: 140 KB for support files, plus
approximately 100 KB per stored plan, depending on
plan complexity (proportional to number of activities in
the plan). Compressed binary executable was 4MB. At
most one plan needs to be stored, though all plans were
stored during RAX for validation purposes. RAX also
generated a 1MB log file I disagree; log files have
nothing to do with whether it is/not a science mission.
We'll always need log files.

Technology Details

The Remote Agent consists of general-purpose reasoning
engines, and mission-specific domain models. The engines
make decisions and command the spacecraft based on the
knowledge in the models. This section describes the details
of the reasoning engines and how they interact. The DS1
domain models developed for the flight experiment will be
discussed in the flight experiment section.

Planner/SchedulerÑ

PS provides the core of the high-level commanding
capability of R A X . Given an initial, incomplete plan
containing the initial spacecraft state and goals, PS
generates a set of synchronized high-level activities that,
once executed, will achieve the goals. In the spacecraft
domain planning and scheduling aspects of the problem
need to be tightly integrated. The planner needs to
recursively select and schedule appropriate activities to
achieve mission goals and any other subgoals generated by
these activities. It also needs to synchronize activities and
allocate global resources over time (e.g., power and data
storage capacity). Subgoals may also be generated due to
limited availability of resources over time. For example, it
may be preferable to keep scientific instruments on as long
as possible (to maximize the amount of science gathered).
However limited power availability may force a temporary
instrument shut-down when other more mission-critical
subsystems need to be functioning. In this case the
allocation of power to critical subsystems (the main result of
a scheduling step) generates the subgoal Òinstrument must
be offÓ  (which requires the application of a planning step).
The PS is able to tune the order in which decisions are made

to the characteristics of the domain by considering the
consequences of action planning and resource scheduling
simultaneously.  This helps keep the search complexity
under control. This is a significant difference with respect to
classical approaches both in Artificial Intelligence and
Operations Research where action planning and resource
scheduling are typically addressed in two sequential
problem solving stages, often by distinct software systems
(see [18]).

Another important distinction between the Remote Agent
PS and other classical approaches to planning is that besides
activities, the planner also ÒschedulesÓ the occurrence of
states and conditions. Such states and conditions may need
to be monitored to ensure that, for example, the spacecraft is
vibrationally quiet when high stability pointing is required.
These states can also consume resources and have finite
durations and, therefore, have very similar characteristics to
other activities in the plan. PS  explicitly acknowledges this
similarity by using a unifying conceptual primitive, the
token, to represent both actions and states that occur over
time intervals of finite extension. More details with
examples of the semantics of a token are given further along
in this section.

PS consists of a heuristic search engine, the Incremental
Refinement Scheduler (IRS) that deals with  incomplete or
partial plans. Since the plans explicitly represent time in a
metric fashion, the planner makes use of a temporal
database.  As with most causal planners, PS begins with an
incomplete plan and attempts to expand it into a complete
plan by posting additional constraints in the database.
These constraints originate from the goals and from
constraint templates stored in a domain model of the
spacecraft. The temporal database and the facilities for
defining and accessing model information during search are
provided by the HSTS system. The planning engine
searches the space of possible plans for one that satisfies the
constraints and achieves the goals. The action definitions
determine the space of plans. The constraints determine
which of these plans are legal, and heavily prune the search
space. The heuristics guide the search in order to increase
the number of plans that can be found within the time
allocated for planning. Error! Reference source not
found.Error! Reference source not found.Figure 2
describes the PS architecture. Additional details on the
planner algorithm and its correctness can be found in [11].

The model describes the set of actions, how goals
decompose into actions, the constraints among actions, and
resource utilization by the actions. For instance, the model
will encode constraints such as "do not take MICAS images
while thrusting" or  "ensure that the spacecraft does not slew
when within a DSN communication window". These
constraints are encoded in a stylized and declarative form
called the Domain Description Language (DDL). In
conventional modes of writing flight software the
constraints in the domain are mixed with the control
information. In the model-based approach of RA, the
domain model is a distinct entity (see Fig. 4) which encodes

Figure 2: Temporal Constraints in DDL

(Define_Compatibility
  ;; compats on SEP_Thrusting
  (SEP_Thrusting ?heading ?level ?duration)
  :compatibility_spec
  (AND

(equal (DELTA MULTIPLE (Power) (+ 2416
Used)))

       (contained_by (Constant_Pointing
    ?heading))

       (met_by (SEP_Standby))
       (meets  (SEP_Standby)))
)

(Define_Compatibility
  ;; Transitional Pointing
  (Transitional_Pointing ?from ?to ?legal)
  :parameter_functions
    (?_duration_ <- APE_Slew_Duration (?from

?to ?_start_time_))
    (?_legal_    <- APE_Slew_Legality (?from ?to

?_start_time_))
  :compatibility_spec
  (AND

(met_by (Constant_Pointing ?from))
       (meets  (Constant_Pointing ?to))))

(Define_Compatibility
  ;; Constant Pointing
  (Constant_Pointing ?target)
  :compatibility_spec
  (AND

(met_by (Transitional_Pointing * ?target
LEGAL))

(meets (Constant_Pointing ?target *
LEGAL)))

 )
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the mission specific flight rules. This means that (in the case
of PS) not only are the core engines (the HSTS Temporal
Database (TDB) and the Search Engine) reusable across
missions, but that the model that is separate can be
manipulated independently of any other piece of the flight
code (note that since the heuristics search control
information is model dependant, this module would be
impacted also). In addition, the richness of the
representation and the declarative form of the DDL ensures
that mission/systems engineers can have a substantially
easier job of understanding and verifying the flight rules in
the RA than would have been possible in conventional
FSW. These are some of the substantial advantages that the
RA brings to a mission.

HSTS
TDB

Model
(DDL)

HeuristicsIRS Search
engine

EngineNAV
Expert

Plan

Domain Knowledge

ACS
Expert

Mission Profile

Initial state

Figure 2: Planner/Scheduler Architecture

Each subsystem in the model is represented in  the PS
database. Each as a set of dynamic state variables whose
value is tracked over time. Timelines are treated as
instantiations of state variables and are used interchangeably
with state variables in this report. Each dynamic state
variable can assume one or more values. A token is
associated with a value of a state variable occurring over a
finite time interval. Each value has one or more associated
compatibilities, i.e., patterns of constraints between tokens.
A legal plan will contain a token of a given value only if all
temporal constraints in its compatibilities are satisfied by
other tokens in the plan. Fig.3 shows an example of a set of
compatibilities with temporal constraints.

The first compatibility indicates that the master token,
Sep_Thrusting (when the Solar Electric Propulsion engine
is producing thrust), must be immediately preceded and
followed by a SEP_Standby token (when the SEP engine is
in a standby mode but has not been completely shut off),
and it must be temporally contained by a constant pointing
token, and the complete thrusting activity requires 2416
Watts of power. The Constant_Pointing token implies that
the spacecraft is in a steady state aiming its camera towards
a fixed target in space. Transitional_Pointing tokens
describe an activity when the spacecraft slews. Figure
3below gives a visual rendering of these compatibilities.

Figure 3: A Plan fragment formed by a DDL model

The timeline approach to modeling is also driven by strong
software engineering principals. In a complex domain with
different individuals and organisations with varying
expertise, timelines provide disparate views of the same
domain model across organisational boundaries. For
instance the ground team might want to own and access
timelines relating to communication coverage and when
DSN access is available, while the attitude control team
might want to place high level goals on the attitude timeline.
 In Error! Reference source not found. below we identify
four distinct kinds of state variables. A goal timeline will
contain the sequence of high-level goals that the spacecraft
can satisfy (e.g., the Navigate goal described before). Goal
timelines can be filled either by ground operators or by on-
board planning experts seen by PS as goal generators. For
example, in order to generate the portion of the plan that
commands the IPS engine, PS interrogates NAV which
returns two types of goals: the total accumulated time for
the scheduling horizon and the thrusting profile to be
followed. These two types of information are laid down on
separate goal timelines. Expected device health information
over time is tracked by health timelines. The expected
profile is communicated by EXEC to PS in the initial
spacecraft state. EXEC can communicate that the health of a
device has changed even if no fault has occurred. Another
kind of state variable is an internal timeline. These are only
used by the planner to internally organize goal dependencies
and subgoaling. Finally, an executable state variable
corresponds to tasks that will be actually tracked and
executed by EXEC.

The RAX PS treats all timelines and tokens within a simple,
unified search algorithm. This has advantages. The ground
team could force certain behaviors of the spacecraft by
including in the mission profile explicit tokens on
executable timelines. The additional tokens will be treated
by PS as goals, will be checked against the internal PS
model and missing supporting tasks will be automatically
expanded to create a overall consistent plan. This will
greatly facilitate the work of the ground team. A plan
fragment based on these compatibilities is shown in Fig. 6.
For DS1 such models were understandbly more
comprehensive and complex with more timelines, tokens
and compatibilities between differing token types, and
required careful consideration during modeling to ensure
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interactions between timelines do not result in unanticipated
and harmful behaviors generated by the planner.

When a science mission wants to fly the RA planner, the
primary set of tasks needed to adapt it to the mission will
be:

•  perform knowledge acquisition to determine all the
spacecraft flight rules.

•  encode these flight rules in the DDL model of the
spacecraft.

•  design the search control heuristics that will be needed
to ensure that the planner is able to produce a valid
plan within specified resource (time, CPU) bounds.

We do not intend to suggest that models can be or ought to
be built in a all or nothing fashion. On the contrary we
strongly believe that the process of coming up with a viable
plan which encapsulates all the flight rules in the domain is
in the incrementality of the process (you "build some and
test some").

As mentioned previously since the search engine would not
need to be adapted but reused, the mission will save costs in
revalidating the control system and can confine itself to
building and validating the model and search control
heuristics. Efforts are underway at NASA ARC to
implement automated tools which will ensure that full
coverage of the behaviors anticipated by the models (and
none other), is simulated during the modeling process.
Additional efforts are also underway to automatically
generate the heuristics from a given model of the domain.
This will further allow mission designers and systems staff
to build robust and complex models on their own without
relying on the technologists themselves.

Additional details about the planner can be found in [6], [7],
[8], [11], [12] and [13].

ExecutiveÑThe Smart Executive (EXEC) is a multi-
threaded, reactive commanding system. EXEC is
responsible for sending the appropriate commands to the
various flight systems it is managing.  EXEC can replace the
traditional spacecraft sequencer or it can be used in
conjunction with a traditional sequencer to command a
complex subsystem, e.g., interferometer.

EXEC is a multi-threaded process that is capable of
asynchronously executing commands in parallel.  In
addition to the capabilities of a traditional sequencer, EXEC
is capable of:

•  Simultaneously achieving and maintaining multiple
goals, i.e., system states, by monitoring the success
of commands it issues and reactively re-achieving
states that are lost.

•  Conditional sequencing.  Commands can be
dependent on conditions that occur at execution
time.

•  Event-driven commanding, as opposed to
traditional sequencers that are time-driven.  For
example, taking a sequence of pictures based on
the results of monitoring a range sensor.

•  High-level commanding and run-time task
expansion.  EXEC provides a rich procedural
language, Execution Support Language (ESL) [1]
in which spacecraft software/model developers
define how complex activities are broken up into
simpler ones.  A procedure can specify multiple
alternate methods for goal achievement to increase
robustness.

•  Sequence recovery.  In the event that a command
in an executing sequence fails, EXEC suspends
execution of the failed sequence and attempts a
recovery, either by executing a pre-specified
recovery sequence such as reissuing the command
or consulting a recovery expert, e.g., MIR.  Once
the desired state of the failed command is achieved,
the suspended sequence is restarted.

•  Temporally-flexible sequence (or plan) execution.
In order to decrease the probability of a sequence
failing, time ranges can be specified for executing
and achieving the desired state for each command.

•  Resource Management.  As a multi-threaded
system, EXEC can work on multiple tasks
simultaneously.  These tasks may compete for
system resources within the constraints not already
resolved by ground or the planner.  EXEC manages
abstract resources by monitoring resource
availability and usage, allocating resources to tasks
when available, making tasks wait until their
resources are available, and suspending or aborting
tasks if resources become unavailable due to
failures (such as a device breaking).  See [1] and
[2] for a more detailed discussion.

The following figure illustrates key functions of EXEC.
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Figure 6 An Overview of the Remote Agent Executive

EXEC achieves multiple tasks sending the appropriate
control commands (decomposed from high-level
commands) to the flight software.  The tasks also lock
properties that the tasks need to maintain.  For example, if
task commands a switch ON, the switch property will be
locked ON.  Monitors (and Livingstone) determine if it is
consistent to believe that the switch is ON.  EXEC stores
this state in its state database.  Should the inferred state of
the switch change, the database will be updated and an event
created signaling a change. If the signaled event violates a
property lock, an EXEC property daemon (thread) interrupts
those tasks that subscribed to that property lock.  EXEC
then attempts to achieve the state of the switch being ON
using its own recovery mechanism or by consulting a
recovery expert, e.g., Livingstone.  If the switch cannot be
turned ON in time, a hard-deadline that EXEC is tracking is
missed, EXEC commands the spacecraft into a safe, wait
state while EXEC requests a new plan from the planner that
takes into account that the switch cannot be turned ON.

Recoveries may be a simple as sending another command to
turn a switch ON, or may be complex, such as when
multiple subsystems are tightly coupled.  For example,
consider two coupled DS1 subsystems: the engine gimble
and the solar panel gimbal. A gimbal enables the engine
nozzle to be rotated to point in various directions without
changing the spacecraft orientation. A separate gimble
systems enables the solar panels to be independently rotated
to track the sun. In DS1, both sets of gimbals communicate
with the main computer via a common gimbal drive
electronics (GDE) board. If either system experiences a
communications failure, one way to reset the system is to
power_cycle (turn on and off) the GDE. However, resetting
the GDE to fix one system also resets the communication to
the other system. In particular, resetting the engine gimbal,
to fix an engine problem, causes temporary loss of control
of the solar panels. Thus, fixing one problem can cause new
problems. To avoid this, the recovery system needs to take
into account global constraints from the nominal schedule
execution, rather than just making local fixes in an

incremental fashion, and the recovery itself may be a
sophisticated plan involving operations on many
subsystems.

Domain-code developers use ESL to create high-level
commands that EXEC decomposes and executes at run-time
depending on the spacecraft state. The following ESL code
fragment illustrates multiple methods for achieving IPS
thrusting at a desired level depending on the current state of
execution. If the IPS is in standby mode, the ACS is
commanded to change control modes only after the desired
IPS thrust level has been confirmed.

(to_achieve (IPS_THRUSTING ips level)
 ((ips_is_in_standby_state_p ips)
  (sequence (achieve (power_on? 'ega—a))
  (command_with_confirmation
   (send—ips—set—thrust—level level))
  (command_with_confirmation
   (send—acs—change—control—mode
    :acs—tvc—mode))))
 ((ips_in_thrusting_state_p ips)
  (command_with_confirmation
   (send—ips—change—thrust—level level)))
 (t (fail :ips_achieve_thrusting)))

EXEC and its commanding language, ESL, are currently
implemented using multi-threaded Common LISP.  A new
version of EXEC is currently under development in C/C++.
The internal EXEC code is designed in a modular, layered
fashion so that individual modules can be designed and
tested independently.  Individual generic device knowledge
for RAX is implemented based on EXEC's library of device
management routines, to support addition of new devices
and reuse of the software on future missions.

More details about EXEC can be found in [1], [2], [3] and
[8].

Diagnosis and RepairÑ We refer to the diagnosis and repair
engine of RA as MIR, for Mode Identification and
Reconfiguration. MIR eavesdrops on commands that are
sent to the on-board hardware managers by the EXEC. As
each command is executed, MIR receives observations from
spacecraft sensors, abstracted by monitors in lower-level
device managers for the Attitude Control Subsystem (ACS),
Bus Controller, and so on.  MIR uses an inference engine
called Livingstone to combine these commands and
observations with declarative models of the spacecraftÕs
components to determine the current state of the system
(Mode Identification) and report it to the Exec. Exec may
then request that Livingstone return a set of commands that
will recover from a failure or move the system to a desired
configuration (Mode Reconfiguration).  illustrates the data
flow between a spacecraft, Exec and Livingstone.

MI is responsible for identifying the current operating or
failure mode of each component in the spacecraft, allowing
Exec to reason about the state of the spacecraft in terms of
component modes, rather than in terms of low-level sensor
values.  MR is responsible for suggesting reconfiguration
actions that move the spacecraft to a configuration that
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achieves all current goals as required by PS and EXEC,
supporting the run-time generation of novel reconfiguration
actions.  Though in RA Livingstone is only used to recover
following a component failure, its MR capability can be
used to derive simple actions to reconfigure the spacecraft at
any time. Thus Livingstone can be viewed as a discrete
model-based controller in which MI provides the sensing
component and MR provides the actuation component.
Livingstone uses a single set of models and core algorithms
to provide both the MI and MR functions.

 To use Livingstone, one specifies how the components of
interest are connected.  For each type of component, one
then specifies a finite state machine that provides a
description of the componentÕs nominal and failure
behavior. Figure 5 graphically depicts a Livingstone model
of the Cassini main engine subsystem. An important feature
is that the behavior of each component state or mode is
captured using abstract, or qualitative, models [3, 4]. These
models describe qualities of the spacecraftÕs structure or
behavior without the detail needed for precise numerical
prediction, making abstract models much easier to acquire
and verify than quantitative engineering models.  Examples
of qualities captured are the power, data and hydraulic
connectivity of spacecraft components and the directions in
which each thruster provides torque.  While such models

cannot quantify how the spacecraft would perform with a
failed thruster for example, they can be used to infer which
thrusters are failed given only the signs of the errors in
spacecraft orientation.  Such inferences are robust since
small changes in the underlying parameters do not affect the
abstract behavior of the spacecraft.

Livingstone Õs abstract view of the spacecraft is supported
by a set of fault protection monitors that classify spacecraft
sensor output into discrete ranges (e.g. high, low nominal)
or symptoms (e.g. positive X-axis attitude error). One
objective of the RA architecture was to make basic
monitoring capability inexpensive so that the scope of
monitoring could be driven from a system engineering
analysis instead of being constrained by software
development concerns. To achieve this, monitors are
specified as a dataflow schema of feature extraction and
symptom detection operators for reliably detecting and
discriminating between classes of sensor behavior. The
software architecture for sensor monitoring is described
using domain-specific software templates from which code
is generated. Finally, all symptom detection algorithms are
specified as restricted Harel state transition diagrams
reusable throughout the spacecraft. The goals of this
methodology are to reuse symptom classification
algorithms, reduce the occurrence of errors through
automation and streamline monitor design and test.

It is important to note that the Livingstone models are not
required to be explicit or complete with respect to the actual
physical components. Often models do not explicitly
represent the cause for a given behavior in terms of a
componentÕs physical structure.  For example, there are
numerous causes for a stuck switch: the driver has failed,
excessive current has welded it shut, and so on.  If the
observable behavior and recovery for all causes of a stuck
switch are the same, Livingstone need not closely model the
physical structure responsible for these fine distinctions.
Models are always incomplete in that they have an explicit
unknown failure mode.  Any component behavior that is
inconsistent with all known nominal and failure modes is
consistent with the unknown failure mode.  In this way,
Livingstone can infer that a component has failed, though
the failure was not foreseen or was simply left unmodeled
because no recovery is possible.  By modeling only to the
level of detail required to make relevant distinctions in
diagnosis (distinctions that prescribe different recoveries or
different operation of the system), we can describe a system
with qualitative "common-sense" models which are compact
and quite easily written.

Livingstone uses algorithms adapted from model-based
diagnosis (see [10]) to provide the above functions.  The key
idea underlying model-based diagnosis is that a combination
of component modes is a possible description of the current
state of the spacecraft only if the set of models associated
with these modes is consistent with the observed sensor
values.  Following de Kleer and Williams [9], MI uses a
conflict directed best-first search to find the most likely
combination of component modes consistent with the
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observations.  Analogously, MR uses the same search to
find the least-cost combination of commands that achieve
the desired goals in the next state.  Furthermore, both MI
and MR use the same system model to perform their
function.  The combination of a single search algorithm with
a single model, and the process of exercising these through
multiple uses, contributes significantly to the robustness of
the complete system.  Note that this methodology is
independent of the actual set of available sensors and
commands.  Furthermore, it does not require that all aspects
of the spacecraft state are directly observable, providing an
elegant solution to the problem of limited observability.
Figure 10 provides a schematic overview of LivingstoneÕs
processing.

The use of model-based diagnosis algorithms immediately
provides Livingstone with a number of additional features.
First, the search algorithms are sound and complete,
providing a guarantee of coverage with respect to the
models used.  Second, the model building methodology is
modular, which simplifies model construction and
maintenance, and supports reuse.  Third, the algorithms
extend smoothly to handling multiple faults and recoveries
that involve multiple commands.  Fourth, while the
algorithms do not require explicit fault models for each
component, they can easily exploit available fault models to
find likely failures and possible recoveries.

Since RAX, Livingstone has been ported to C++ and
significantly improved in the areas of both MI and MR.  The
improved Livingstone is scheduled to be test flown on both
the X-34 and X-37 experimental vehicles. Additional
technical details about Livingstone can be found in  [4] and
at http://ace.arc.nasa.gov/postdoc/livingstone

Subsystem Interdependencies

The Remote Agent commands the spacecraft through
commands sent to flight software and interacts with a

specific set of subsystems in the FSW. RAX commanded
the following systems to demonstrate the validation
objectives of the technology

•  Ion Propulsion Engine (IPS)
•  Miniature Integrated Camera and Spectrometer

(MICAS) camera imaging.
•  Navigation Expert System (NAV)
•  Attitude Planning Expert (APE)
•  Attitude Control System (ACS)
•  Switches

The RAX Manager (RAXM) is the flight software interface
to the Remote Agent experiment (RAX) and isolates the RA
software from the rest of the FSW via a set of clean API's.
This was the primary use for the RAXM and proved critical
in letting the RAX team work in isolation from the DS1
flight team after the redirect.

In addition it provides a terminal in the point-to-point
message passing protocol used by the DS1 flight software
with all messages passing thru it (see Fig.1) The RAXM  in
particular is tasked with handling three messages throughout
the mission: RAX-START, RAX-STOP and RAX-ABORT;
RA software is operational only during the times between a
RAX-START and either RAX-STOP or RAX_ABORT.
The RAX-STOP is implemented to cleanly terminate the
RAX at the end of the experiment under nominal
circumstance while the RAX-ABORT is intended to kill the
RAX process in the event of an abnormality detected by
RAXM. At all other times, the RAXM discards all incoming
messages allowing all FSW subsystems that interact with
RAX to be ignorant of the RAX state.

When RAX runs, the RAXM handles and dispatches all
incoming messages related to RAX -- some of the messages
are handled by the RAXM, others are passed through to
RAX itself.  Similarly, outgoing messages from the RAXM
can be due either to the RAXM or to RAX itself.

Like the code for other flight software subsystems, the
RAXM is written in the 'C' programming language and is
part of the launch load.  As a result, the interfaces for RAX
needed to be specified early.

The computational resources (CPU fraction, memory space,
telemetry buffers and downlink, etc) required by the RAXM
when RAX was not running were insignificant.  This was by
design as a way to mitigate the impact of the RAX
technology demonstration on DS1.

Preparing Lisp for Flight

One important aspect of the RAX preparation for flight was
the preparation of Lisp for flight.  The RAX software
development and runtime environment was based on
Common Lisp, in particular the Harlequin Lispworks
product. The use of Lisp was appropriate given the
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background of the RAX developers, the early inheritance of
code libraries, and the hardware independence of the high-
level software interfaces between RAX and the rest of flight
software.  However, with the choice of Lisp came some
unique challenges.  These challenges fell into two rather
broad categories: resource constraints and flight software
interfaces.

To fit within the 32 MB memory allocation and the CPU
fraction constraints, the RAX team thoroughly analyzed
their code for memory and performance inefficiencies and
employed a ``tree-shaking/transduction'' process to the Lisp
image.  The analysis is, of course, common for any high
performance software. However, transduction is Lisp-
specific and arises from the tight coupling of the Lisp
runtime and development environments. Transduction
removes the unneeded parts of the development
environment, e.g., the compiler, debugger, windowing
system.  The result is a significantly smaller image, both in
terms of file system and runtime memory.  During RAX
testing, peak memory usage was measured at about 29 MB,
Upon completion of the transduction process the RAX Lisp
image was compressed by a factor of about 3 to 4.7~MB
and uplinked to the spacecraft.  On-board decompression
was initiated at the start of each RAX run, with the file
being inflated directly into the 32~MB RAX memory space.
Use of this custom compression drastically reduced the file
uplink time and kept the RAX file space usage within the
agreed upon limits.

Besides the resource constraints, we also dealt with a
complicated flight software interface.  The flight software
was written in the 'C' programming language and ran on the
VxWorks operating system.  Lisp and 'C' interacted through
Lisp's foreign function interface.  This interface was the
source of many early problems, primarily caused by
discrepancies between data structure alignments assumed by
the Lisp and 'C' compilers.  These problems were quickly
discovered and resolved with the help of an extensive test
suite that tested a large number of function parameter
variations.

Another problem arose in preparing the Lisp multi-threading
system for flight.  Originally, the Lisp thread scheduler
relied on a high frequency external, periodic wakeup call,
issued at interrupt level.  However, this went against the
design principles of the DS1 flight software.  Hence, we had
to significantly change Lisp's approach to thread preemption
to use a lower frequency wakeup call implemented with
flight software timing services.

Most of the late integration problems with RAX Lisp arose
because of the VxWorks port.  As RAX moved from testbed
to testbed, ever closer to the final spacecraft configuration,
low-level Lisp problems arose.  The problems were
consistently of two types: a function assumed by Lisp to be
present was not present or a function was present but did not
perform as expected by Lisp.  The first type of problem was
resolved by consistent application of a detailed RAX and

FSW build process.  The second type of problem was
addressed on a case-by-case basis.  Solutions to these
problems were made difficult due to the reduced debugging
visibility as testbeds assumed the spacecraft configuration.
We benefited from the dedicated efforts of both Harlequin
and the DS1 FSW team.

THE REMOTE AGENT EXPERIMENT

During the DS1 mission the Remote Agent technology was
validated with an experiment, the Remote Agent
eXperiment (RAX). The flight experiment was conducted
between May 17th 1999 and May 21st 1999, and achieved all
of the technology validation objectives. However, the story
will only be partial without reporting the valuable data
gathered during development and testing on the ground. In
the case of Remote Agent this is particularly important since
the technology is intended as a tool to support system
engineering and operations for a mission, rather than simply
provide the resulting autonomous capabilities. By
quantitatively analyzing the history of development of RAX
we can evaluate how well the current state of the technology
support its ultimate goals. This can also help identify weak
points that require further research and development.

In this section we describe RAX and we attempt to evaluate
the development and testing experience with respect to the
features of the technology. We first put RAX into the larger
perspective of the evolution of the Remote Agent
technology. Then we describe the experiment scenarios, the
subsystems and fault modes modeled and the expected in-
flight behavior. We then discuss how RAX was developed
and validated. We support our analysis on the actual record
of the problem reports filed in the RAX problem tracking
system during development. Finally, we conclude with a
description of the flight experiment and an analysis of its
results.

Historical PerspectiveÑDevelopment of the Remote Agent
technology effectively started in May 1995. At that time
spacecraft engineers from JPL and Artificial Intelligence
(AI) technologists from Ames and JPL started working
together on the New Millennium Autonomy Architecture
rapid Prototype (NewMAAP), a 6 month effort intended to
assess the usability of AI technologies for on-board flight
operations of a spacecraft (see [19])]. NewMAAP yielded a
proof of concept of an autonomous agent that formed the
fundamental blueprint for Remote Agent. NewMAAP also
helped build the team of technologists that continued
development of Remote Agent on DS1.

The successful demonstration of NewMAAP in November
1995 led to the selection of Remote Agent as one of the
components of the autonomy flight software for DS1.
Between December 1995 and April 1997 the Remote Agent
team was part of the  DS1 flight software team. This led to
the development of the three engines of the RA component
technologies and included a substantial speed up of the MIR
inference engine (see [4]), the design and implementation of
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the ESL language used by EXEC (see [1]), and the design
and implementation of the heuristic search engine for PS
together with the language to formulate search heuristics.
With regard to the overall Remote Agent architecture, we
designed and implemented the fault protection protocols,
both at the low-level, involving EXEC and MIR and at the
high-level, involving EXEC and PS. During this period we
acquired much of the high-level system knowledge needed
to model DS1 cruise operations (including image
acquisitions of beacon asteroids for AutoNAV, timed IPS
thrusting and file uplink and downlink) and other DS1
capabilities required for asteroid encounter activities.

In March 1997 the DS1 autonomy flight software was
substantially overhauled and DS1 adopted the Mars
Pathfinder (MPF) flight software as the basis for its flight
software, Remote Agent was re-directed to become an
experiment operating for at most six days during the
mission on a cruise scenario including AutoNAV orbit
determination and IPS timed thrusting. RAX re-used much
of the software developed during the previous autonomy
flight software phase of DS1. RAX focused on the process
of testing each RA component, integrating and testing them
into the complete RA, and integrating and testing RA
together with the DS1 flight software on the flight
processor. Shortcomings found during the development and
testing phases required several extensions and re-designs of
domain models and the reasoning engines.

In this document we focus solely on RAX and we will make
use of the detailed development and testing records
maintained during this phase. However, when we will
attempt to give our conclusion on technology readiness and
costs of the technology, we will do so keeping in mind the
entire history of development of Remote Agent. Table 2
below shows the highlights of the RA Experiment starting
with the RAX development effort after the redirection of the
flight software to MPF. Due to this change, as has been
noted elsewhere in this report, a requirement was imposed
on us to keep interactions with the DS1 flight team to a
minimum. From the beginning, the RAX Manager (RAXM)
was identified as being the primary interface to RA and part
of the launch load of DS1; delivery of RAXM was initiated
by December after negotiating all interfaces with FSW. This
was the only significant interaction we had with the DS1
flight team till February 1999. Integration of RAX on the
Radbed high fidelity testbed was completed during April
1998 which allowed us to understand the timing
characteristics of RA in flight. The RAX SDR in September
allowed us for the first time to show the DS1 project the
progress we were making and explain the expected behavior
of RAX during flight.  November of the same year barely
five months before the experiment, was the first time RAX
software ran on a papabed after  interfacing with the actual
FSW; it took another month (and some more) to actually
produce a plan and execute it on this testbed. The RAX
delivery entered the final deliverable phase in February of
1999 with code development frozen and bug fixes under a
strict change control regime. RAX was finally initiated on
DS1 on May 17th 1999.

Event Date

Start of RAX development April 1997

Delivery of RAX Manager to flight
software

December 1997

RAX integrated on the flight
processor

April 1998

Project Software Delivery Review September 1998

DS1 launch October 1998

First run of RAX with FSW on
high-fidelity hardware simulation

November 1998

Beginning of M5 DS1 project phase February 1999

RAX experiment May 1999

Table 2: Significant events for the RAX project

We now describe in detail the DS1 subsystems modeled in
RAX and the scenarios on which Remote Agent was
exercised during RAX development and testing.

Domain modelsÑWe only developed domain models for
the subsystems and fault modes that were necessary for the
experiment. Table XXX describes the timelines modeled by
the planner.  Tables XXX and XXX list the components and
module models developed for MIR.  These models captured
the following subsystems and resources:

•  Ion Propulsion System
Detect and command standby through thrusting states.

•  Attitude Control Subsystem.
PS planned attitude changes requested by NAV (IPS
attitudes and beacon asteroids) or specified as goals in
the mission profile. These attitudes were restricted in
the model to slews that maintained the solar panels on-
sun. For the experiment, the NAV profiles and goals
were specified to further limit the attitudes to either
HGA at Earth (the default attitude and the IPS thrust
attitude), or MICAS bore-sight at a beacon asteroid.

•  MICAS
PS planned data takes and low-voltage power on/off
(switch status and commands were modeled, but the
switch commands are not actually issued. See the
scenario description for why this is so.)

•  Power
PS tracked predicted peak-power usage for each
activity in the plan (e.g., IPS thrusting, MICAS on), and
ensured that the total would never exceed the available
power from the solar panels, as predicted by the
operations team and supplied in the mission profile

MIR modeled a portion of the power distribution
system and its relays in order to confirm operation of
the switches commanded by RAX and disambiguate
between failures in the power system and erroneous
sensor readings.  MIR modeled switches not
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commanded by RA so that it could request the
experiment be aborted if the power system was in a
state out of scope for the experiment.

•  Reaction Control System
MIR modeled the thruster pallets, thrusters and valves
of the RCS system in order to determine the health of
the various components from errors in attitude and
recommend which control mode to utilize

•  Data System
MIR modeled the 1553 bus and a subset of the remote
terminal devices on it in order to monitor for remote
terminal hangs and recommend resets.  Resetting was
limited to the PASM instrument.   Other remote
terminals were modeled in order to allow MIR to
request the experiment be aborted if certain out of
scope data system problems occurred.

•  Sensors
MIR modeled a subset of the switch position and
current sensors on-board DS1 as fallible components in
order to allow sensor failure as an explanation for
unexpected observations

•  Remote Agent
PS models aspects of the operation of the Remote
Agent itself.  For example, the Planner timeline allows
PS to plan time for its next planning activity. The
Special Activities timeline allows PS to schedule
execution of scripts that (unbeknownst to RA) will
cause simulated failures on-board the spacecraft.

Experiment Scenarios

The RAX experiment proposal contained of a 12-hour
scenario and a 6-day scenario. The 12-hour scenario was
designed as a confidence builder for the DS1 project. The 6-
day scenario was to be run following successful completion
of the 12-hour scenario. Together, the 12-hour and 6-day
scenarios demonstrate all RAX validation objectives and
they were used for all RAX integration and testing until the
beginning of March 1999.  In March 1999 the DS1 project
levied additional constraints on how the spacecraft could be
commanded and specified that RAX should produce 12
hours of thrust or less.  We responded by developing a 2-
day scenario that met the additional commanding constraints
and provided 12 hours rather than 4 days of thrusting.  Our
ability to quickly develop a new scenario in response to
these new constraints was viewed very favorably by the
DS1 project.  Each of these scenarios is described below.

Twelve-hour ScenarioÑ The twelve-hour scenario involves
neither on_board planning nor thrusting with the Ion
Propulsion System (IPS). Rather, the plan is generated on
the ground, uplinked to the spacecraft, and executed by
EXEC and MIR. The scenario includes imaging asteroids
with the MICAS camera to support optical navigation, a
simulated sensor failure scenario, and demonstration of low-
level commanding from a script through RAX to flip a
switch. The planning of optical navigation imaging provides
the planner the opportunity to reject low-priority,
unachievable goals since the optical navigation windows
had time only to image a subset of the asteroid goals.

Six-day ScenarioÑ The 6-day scenario includes both
on_board planning and operating the IPS, and is a full up
test of RA. The scenario is divided into 2 planning horizons.
At the start of the scenario, PS generates a plan for the first
horizon that included MICAS imaging for optical
navigation and IPS thrusting. Execution of the first plan also
includes a ground command to modify the goals for the
second horizon. At the end of the optical navigation window
PS plans to switch off the MICAS camera. However, a stuck
on failure injection in the camera switch prevents RA from
turning off the camera, leading to a plan failure. Repeated
attempts to recover the problem fail. This leads to a replan,
which produces a second plan with the camera being left on.
The second plan also includes an activity to produce a plan
for the second horizon (the third plan in the scenario), which
is executed back_to_back with the second plan. While the
second plan is being executed, the switch failure injection is
undone and ground informs MIR that the switch is now
fixed. The execution of the third plan includes IPS thrusting,
optical navigation imaging, and two simulated failures, a
communication failure on the 1553 bus, and a thruster valve
stuck closed failure.

The MICAS stuck-on failure demonstrates how MIR and
EXEC can make repeated attempts to recover a camera
switch until it is deemed permanently stuck.  The 1553 bus
remote-terminal failure illustrates successful recovery of
communication with a device by resetting its remote
terminal (RT).  In the ACS thruster stuck-closed failure
MIR infers from an attitude error and models of the
spacecraft dynamics that one of a particular pair of thruster
valves is stuck closed.  MIR is then able to recommend that
no matter which one of the two valves is stuck, switching
ACS control modes will mitigate the problem.

Two-Day ScenarioÑIn March 1999, the DS1 project
analyzed the 6-day plan and decided that RA should not
switch the MICAS camera off after each use due to
concerns about thermal effects.  In addition, RA would be
required to produce at most 12 hours of IPS thrusting to
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ACS turns

Micas power

Micas imaging

Special activities

6--10 LOS
4 images/LOS

Fail NEB1 sensor

Figure 1213: 12-hour scenario with no SEP and Ground-based Planning.

ensure that DS1 would be on track for its asteroid encounter
in July 1999.   

The 2-day scenario was created that is similar to a
compressed 6-day scenario, except that the simulated
MICAS switch failure was active for the whole duration of
the scenario. This prevented RA from ever switching off the
camera. Furthermore, the mission profile was adjusted so
that PS would produce plans with only about 12 hours of
IPS thrusting.  This scenario is similar to the standard DS1
cruise phase, which consists of IPS thrusting punctuated
with periodic optical navigation activities. This baseline
demonstrated RAXÕs basic commanding capabilities.

This scenario retains the simulated faults that exercise
RAXÕs robust fault response capabilities. Since we could
not depend on failures occurring during the experiment,

failures were simulated by injecting false monitor readings
consistent with the failures. While simulations are necessary
for demonstration, the RAX is fully responsible for
responding to real failures within its limited scope occurring
during the experiment. To avoid potential conflicts between
RAX and the flight software fault protection mechanism
(FP) the RAX response threshold is a little lower than that
of FP to allow RAX to detect and respond to faults before
FP does. If RAX fails to resolve a fault quickly enough, the
FP response would be triggered (since the fault is still
active). The FP response is to terminate RAX and resolve
the fault.

Man plan

Opnav window

IPS thrusting

ACS turns

Micas power

Micas imaging

NAV OD

Planning

Special activity
Update profile

19 hours5 hours

Figure 1415: First day of the 2-day scenario
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Figure 1617: Second day of the 2-day scenario

RAX development

RAX was developed on a number of platforms of decreasing
processor speed and increasing level of hardware and
software fidelity (see Table 3).

In RAX we adopted a continuous integration development
process. New software capabilities were first developed on
the UNIX platform. Before they could be incorporated in a
software build and be appropriately tagged, new features or
bug fixes had to run to completion a representative set of
scenarios. As time progressed, testbeds of higher and higher
fidelity became available. As this happened, the
requirements for acceptance of software modifications
became more and more demanding since the scenarios had
to run on all available platforms.

Besides the speed of the processors another factor affecting
productivity was the simulated clock speed. The UNIX,
Babybed and Radbed platform made use of a low fidelity
simulation developed by the RAX team, which essentially
only simulated the message traffic and the delays in
receiving responses from flight software. This meant that
the simulator was allowed to advance the clock at ÒwarpÓ
speed, simulating in a second several minutes or hours of
actual elapsed time. Time warping allowed us to run to
completion the full six days scenario in less than an hour,
tremendously increasing the productivity during
development and testing on such lower fidelity testbeds.

Platform Fidelity CPU/OS Hardware Availability Speed

DS1
Spacecraft

Highest
Rad6000
VxWorks

Flight 1 for DS1 1:1

DS1
Testbed

High
Rad6000
VxWorks

Flight
spares +
DS1 sims

1 for DS1 1:1

Hotbench High
Rad6000
VxWorks

Flight
spares +
DS1 sims

1 for DS1 1:1

Papabed Medium
Rad6000
VxWorks

DS1 sims
only

1 for DS1 1:1

Radbed Low
Rad6000
VxWorks

RAX
sims only

1 for RAX 1:1

Babybed
Very
Low

PowerPC
VxWorks

RAX
sims only

2 for RAX 7:1

UNIX Lowest
SPARC
UNIX

RAX
sims only

unlimited 35:1

Table 4: Development testbeds for RAX

UNIX August 1997
Babaybed February 1998
Radbed April 1998
Papabed November 1998
Hotbench March 1999
DS1 testbed April 1999
DS1 spacecraft May 1999

Table 5: Dates of RAX readiness on testbeds

Since the higher fidelity testbeds could not be warped in
time because of interfaces to the actual FSW code, it
induced us to devise reduced length scenarios that would
exercise in a few hours of actual clock time most or all of
the functionalities included in the full, multi-day flight
scenarios. These shorter scenarios led to exercising RAX
under stress conditions complementary to those addressed
by the formal test process. As a consequence continuous
integration over the course of testing and development led to
the discovery and correction of a large quantity of RAX
software problems.

Ground Tests

To qualify RAX to run on board the DS1 spacecraft, RAX
underwent a rigorous program of formal tests. The tests
covered nominal and off-nominal situations, and exercised
each Remote Agent component individually, the integrated
RAX product, and RAX together with the flight software, at
all levels of fidelity available on the ground testbeds.

Autonomous systems like RA pose testing challenges that
go beyond those usually faced by more traditional flight
software. In fact, the range of possible behaviors exhibited
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by an autonomous system is usually very large. This is
consistent with the expectation that the system operate
robustly over a large range of possible values of system
parameters. An exhaustive verification of all situations,
however, would require an unmanageably large number of
test cases. To make matters worse, the tests should ideally
be run on high-fidelity testbeds, which are heavily
oversubscribed, difficult to configure correctly, and cannot
run faster than real time. For example, in RAX we could run
only 10 tests in four weeks on the DS1 Hotbench. To cope
with these time and resource limitations, we employed a
Òbaseline testingÓ approach to reduce the number of tests.
Moreover, we exploited as much as possible the lower-
fidelity testbeds to validate system behaviors for which
there was high confidence that the test results would extend
to the higher fidelity situations. We used the high fidelity
testbeds mostly in nominal situations and under stress
conditions that required RAX to guarantee spacecraft safety.

The baseline scenario was the scenario we expected to
execute in flight, initially the six day and twelve hour
scenarios and subsequently the two days scenario. We tested
a number of nominal and off-nominal variations around
these scenarios. These covered variations in spacecraft
behavior that we might see during execution and changes to
the scenario that might be made prior to execution.  Changes
included variations to the goals in the mission profile,
variations in when faults might occur, and variations in the
FSW responses.

The architecture of RA allowed us to run certain tests on
lower-fidelity testbeds and be confident that their results
would hold on higher-fidelity testbeds. Specifically, the RA
commands and monitors the spacecraft through well-defined
interfaces with the FSW. Those interfaces were the same on
all platforms, as were the range of possible responses.  Only
the fidelity of the responses improved with platform fidelity.
This allowed us to exercise a wide range of nominal and off-
nominal behaviors on the Babybeds and the Radbed, test the
most likely off-nominal scenarios on the Papabed, and test
only the nominal scenarios and certain performance and
timing related tests on the Hotbench  and on the D S 1
Testbed. A special case was testing of the PS component of
RA which made extensive use of the UNIX testbeds for its
functional testing.

The remainder of this section describes the tests on each of
the testbeds, and discusses the effectiveness of our testing
approach given the benefit of hindsight.

UNIXÑThe PS team made extensive use of the UNIX
testbed for PS unit testing throughout the formal testing
process. Use of the UNIX testbed was critical since PS is a
computationally intensive task and could not take advantage
of time warping. Both in nominal and fault response
situations, PS essentially operated as a batch process with
practically no reliance on the underlying real-time system
(e.g., timing services). This allowed us to repeatedly run a
batch of 200 tests with several variations of initial states,
goals of the planner and model parameters (e.g., possible
turn durations). The tests were repeated for each release of

the RA software, providing a certain measure of regression
testing for the PS software.

Babybed and Radbed testingÑEach of the RA modules
devised a test suite of nominal and off-nominal scenarios
that isolated and exercised key behaviors in each module.
For PS this involved a batch of  about 70 tests comprising
some of the tests in the UNIX batch plus tests devised to test
system level responses of PS (e.g., response to invalid initial
state foles or to an asynchronous kill message sent by
EXEC). The repetition of the tests from U N I X both
validated the complete functional equivalence of PS
between UNIX and PPC and verified the acceptability of PS
performance on the real-time architecture.MIR was
exercised  on a batch of 110 tests covering  the likeliest
failure contexts.  The PS and MIR tests were used for
testing EXEC, and a suite of twenty additional scenarios
exercised the system-level interaction of all modules.  These
tests were run rapidly on the babybeds and Radbed with
time warping. Running a scenario was a time-consuming
and error-prone process.  To alleviate this, we designed an
automated testing tool that accepted an encoded scenario
description as input, controlled the simulator and ground
tools to execute the scenario, stopped the test when
appropriate by monitoring the telemetry stream, and stored
all logs and downlinked files for later examination.  This
rapid data collection led to a total running time of about one
week for all tests, since tests could be scheduled overnight
and required no monitoring.  Analyzing the results of the
tests, however, was still a time consuming process.  These
tests were run after each major RAX software release.

Papabed testingÑPapabed was extensively used during
development in order to integrate RAX with the DS1 flight
software. In the context of the formal testing process,
Papabed was used only to run six off-nominal system test
scenarios on the ÒfrozenÓ version of the RAX delivered to
flight software for the flight experiment.  These off nominal
scenarios corresponded to the situations that were most
likely or had the potential for highest impact on the outcome
of the experiment. No bugs were detected in these scenarios,
probably because RA responses to off-nominal situations
were well tested on the babybed.

Hotbench and DS1 Testbed testingÑThe Hotbench and DS1
Testbed were reserved for testing the nominal scenarios, and
for testing a handful of requirements for spacecraft health
and safety. RAX was designed with a Òsafety netÓ that
allowed it to be completely disabled with a single command
sent either by the ground or by on-board FSW fault
protection.  Hence, the only ways in which RAX could
affect spacecraft health and safety was by consuming
excessive resources (memory, downlink bandwidth, and
CPU) or by issuing improper commands.  We tested the
resource consumption cases by causing RAX to execute a
Lisp script that consumed those resources.  We guarded
against improper commands by having subsystem engineers
review the execution traces of the nominal scenarios, and
doing automated flight rule checking.  The nominal
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scenarios were run in conditions that were as close to flight-
like as possible.

Software change controlÑAs the date of the flight
experiment drew closer, our perspective on testing changed.
Throughout 1998 the main goal of testing was to discover
bugs in order to fix them in the code.  Starting in January
1999 the discovery of a bug did not automatically imply a
code change to fix it. Instead, every new problem was
reported to a Change Control Board (CCB) composed by
senior RAX project members.  Every bug and proposed fix
was presented in detail, including the specific lines of code
that needed to change.  After carefully weighing the pros
and cons of making the change, the board voted on whether
or not to allow the fix. Closer to flight, DS1 instituted its
own CCB to review RAX changes.

As time progressed, the CCB became increasingly
conservative and the bias against code modifications
significantly increased.  This is demonstrated by the
following figures.  In total, 66 change requests were
submitted to the RAX CCB. Of these, 18 were rejected
amounting to a 27% rejection rate.The rejection rate steadily
increased as time passed: 8 of the last 20 and 6 of the last 10
submitted changes were rejected.

The reason for this increase in conservatism is easily
explained.  Every bug fix modifies a system that has already
gone through several rounds of testing.  To ensure that the
bug fix has no unexpected repercussions, the modified
system would need to undergo thorough testing.  This is
time consuming, especially on the higher fidelity testbeds,
so that full revalidation became increasingly infeasible as
we approached flight. Therefore, the CCB faced a clear
choice between flying a modified RAX with little empirical
evidence of its overall soundness or flying the unmodified
code and trying to prevent the bug from being exercised in
flight by appropriately restricting the scenario and other
input parameters. Often, the answer was to forego the
change.
Summary of testing resourcesÑWe conducted about 200
functional tests for PS on UNIX (repeated for 6 software
releases),  about 300 Babybed tests (repeated for 6 software
releases), 10 Papabed tests (run once), 10 Hotbench tests
(repeated for two releases), and 2 DS1 Testbed tests (on the
final release) over a period of 6 months with four half-time
engineers. This figure includes design, execution, and
analysis of the test cases, and development of testing tools.
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Subsystem State
Variables

Value
Types

Compat-
ibilities

Comments

MICAS Executable: 2

Health: 1

7 14 Models the health, mode and activity of the MICAS imaging camera.
RAX demonstrates fault injection and recovery for this device as part
of the 6 day scenario.

Navigation Goal: 1

Executable: 1

Internal: 1

5 6 To schedule Orbit determination (OD) based on picture taking
activity.

Propulsion
& Thrust

Goal: 2

Executable: 1

Internal: 1

9 12 Based on thrust schedule generated by the NAV module, the planner
generates plans to precisely activate the IPS in specific intervals based
on constraints in the domain model and is the most complex set of
timelines and subsystem controlled by the planner

Attitude Executable: 1

Health: 1

4 4 Enables the planner to schedule slews between constant pointing
attitudes when the spacecraft maintains its panels towards the sun.
The targets of the constant pointing attitudes are imaging targets,
Earth (for communication) and thrust direction ( for IPS thrusting.)

Power
Manage-
ment

Goal: 1

Internal: 1

2 1 Allows the planner to ensure that adequate power is available when
scheduling numerous activities simultaneously.

Executive Goal: 1

Executable: 1

2 7 Allows modeling of low level sequences bypassing planner models
giving Mission Ops the ability to run in sequencing mode with the
RA.

Planner Executable: 1 2 2 To schedule when the Executive can request the plan for the next
horizon.

Mission Goal: 1 2 2 Allows the Mission Manager and the planner to coordinate activities
based on a series of scheduling horizons updatable by Mission Ops
for the entire mission

Table 8:  Summary of Planner models for RAX

MODULE TIMELINE TOKEN DESCRIPTION

ACS Spacecraft Attitude constant_pointing_on_sun Point vector at Target, Solar Panels at Sun

transitional_pointing_on_sun Turn vector to Target,  Solar Panels at Sun.

poke_primary_inertial_vector Small attitude change.

RCS_Health rcs_available Maintain information on thruster status.

RCS_OK maintain_rcs Set and maintain desired RCS mode.

MICAS
(Camera)

MICAS_Actions micas_take_op_nav_image Take a set of navigation pictures.

MICAS_Mode micas_off Keep MICAS off.

micas_ready Keep MICAS on.

micas_turning_on Turn MICAS off.

micas_turning_off Turn MICAS on.

MICAS_Health micas_availability Ensure MICAS is available for use.

Op-Nav Obs_Window obs_window_op_nav Wait for a specified duration.

Nav_Processing nav_plan_prep Send message to prepare navigation plan.
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PASM PASM Available  pasm_monitor Monitor the PASM switch.

SEP SEP sep_standby Achieve and maintain IPS standby state.

sep_starting_up Achieve and maintain IPS start-up.

sep_thrusting Maintain a thrust level.

sep_shutting_down Stop thrusting and go to standby state.

SEP_Time Accum accumulated_thrust_time Monitor thrust time accumulated.

SEP_Schedule thrust_segment Specifies desired thrust level and vector.

SEP_Thrust Timer max_thrust_time Set a timer and stop thrusting if time reached.

thrust_timer_idle Thrust timer is off.

Planner Planner_ Processing planner_plan_next_horizon

script_next_horizon

Request and get next plan from planner.

Run the next scripted plan.

General EXEC Activity exec_activity Execute a low-level sequence file passed as a
parameter.

EXEC_Eval exec_eval_watcher Process a specified script.

Table 9 Timelines and Their respective tokens by Module (EXEC's perspective)

Module # in Model Subcomponents

power relay 12 1 switch, 1 switch sensor

power distribution unit 1 12 relays, 3 power buses, 3 current sensors, 1 remote terminal

generic RT subsystem 3 1 remote terminal (Models RT for devices MIR does not otherwise model)

IPS system 1 1 IPS, 1 remote terminal

thruster pallet 4 2 thrusters (X facing and Z facing)

reaction control system 1 4 thruster pallets

PASM subsystem 1 1 remote terminal

Table 10: DS1 hardware modeled as modules in MIR
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Component Class # in Model Modes

ion propulsion system
(IPS)

1 Standby, Startup, Steady State Thrusting, Shutdown, Beam Out, Controller
Hung, Unknown

remote terminal 6 Nominal, Resettable Failure, Power-cyclable Failure, Unknown

attitude control 1 TVC, X for Y, Z for Y, X for Y Degraded, Z for Y Degraded, X for Y Failed, Z
for Y Failed, TVC Failed, Unknown

switch 12 On, Off, Popped On, Popped Off, Stuck On, Stuck Off, Unknown

switch sensor 12 Nominal, Stuck On, Stuck Off, Unknown

current sensor 3 Nominal (reported value = real value), Unknown (values unconstrained)

thruster valve 8 Nominal, Stuck Closed, Unknown

thruster 8 Nominal, Unknown

propellant tank 1 Non-empty, Unknown (thruster hydrazine out  or otherwise  unavailable)

bus controller 1 Nominal, Unknown

vehicle dynamics 1 Nominal (This is a qualitative description of force and torque.)

power bus 3 Nominal (Failure considered too fatal and remote to involve in diagnosis.)

Table 11: DS1 hardware modeled as components in MIR
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Ground Tools

To provide adequate coverage and visibility into the
workings of the RA onboard, we designed a suite of
ground tools interfaced with the real-time telemetry
generated by the RA.

The two major goals of the RA ground tools were:

1.  To present a summary of the spacecraft status
understood easily by the mission operations
team.

2.  To present enough information about the inner
workings of the RA software for the experiment
team to quickly recognize and debug problems.

To support these goals, telemetry specific to Remote
Agent was downlinked during the test. The RA-specific
telemetry included contained:

•  Planning events (e.g., planning started, finished, and
progress messages)

•  Sequence execution events (e.g., plan p is starting
execution, or plan step x  started executing at time
t1 )

•  Mode interpretation events (e.g., valve v  changed
state from n o m i n a l  to p o s s i bly-stuck-
closed )

•  Messages between RA components and between RA
and other DS1 flight software.

This telemetry was event oriented and largely
incremental, i.e., interpretation of one message depended
upon receipt of earlier messages.  This design created
some problems as we will detail later.  In addition, there
were heartbeat (ÒIÕm still aliveÓ) messages from RA
components visible in the normal DS1 telemetry.  The
next sections describe specific ground tools constructed to
examine this telemetry.

Packet ViewÑRemote Agent telemetry is event-based.2

PacketView displays these events in a simple one line per
message format that is easily understandable to all
members of the team.  As such, PacketView was the most
fundamental of the RA ground tools. The PacketView
interface (see Fig.8) displayed four types of telemetry
packet for each of the three RA modules and
IPCO_RAXO - on-board messages sent between the three
RA components. These were displayed as color-coded
scrolling lines of text.  Missing packets, detected by gaps
in the sequential packet numbering, were displayed as a
single line in a unique color.  Search capabilities were
available based on message type and content.

                                                            

User selectable dialogs presented "pretty-printed"
versions of the single-line packet entries.  The "time bar"
displayed the most recent "spacecraft sent" Greenwich
Mean Time (GMT), the most recent "ground received"
GMT time, and a running time since last packet was
received.

ExecViewÑ ExecView visualized the execution status of
plansonboard the spacecraft (see Fig. 8).  Different kinds
of activity associated with different parts of the spacecraft
appeared on separate timelines.  For each kind of activity,
specific planned events were represented as tokens
appearing along the timeline.  Tokens were color-coded to
represent their execution status, i.e., in-the-future,
currently-executing, completed and completion-overdue.

Figure 18: Packetview (telemetry packet) display

As the plan was being executed by Exec onboard the
spacecraft, the start and finish times of the activities
would be expected to change.  Through the constraints,
these changes would impact later activities.  ExecView
would propagate these changes downstream in the
schedule, using the same propagation techniques used by
the Planner.

Figure 19: ExecView (plan execution status)
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ExecView was designed initially as a debugging tool for
validating Exec development. As a result it did not have
support for handling missing telemetry packets during
flight. It produced as a result,  some erroneous
conclusions during RAX concerning the state of plan
execution.  To make ExecView more useful, it will have
to handle such missing data.

The Ground PlannerÑOf the three technology modules
flown as part of the RA, the spacecraft team was least
comfortable with PS. To allow the DS1 team to gain
confidence in the onboard planner, the RAX team used a
ground twin of the planner.  The ground planner was
identical to the one onboard and was able to duplicate the
onboard twin by tapping into the real time telemetry
available. It had access to other flight software resources
via connection to the papabed  This testbed accurately
replicated the software onboard DS1 although it did not
replicate the hardware.  Of particular importance to the
planner were navigation module and beacon asteroid file
describing targets for optical navigation and the portion of
the attitude control software that predicted the time
required to change spacecraft orientation.

The ground planner was a useful tool in predicting the
performance of the planner onboard and was especially
useful as a confidence builder for mission staff unfamiliar
with the working of an autonomous planning agent.

PS Graph

PS Graph (see Fig. 11) displayed the problem solving
trajectory taken by PS for each of the plans generated by
the on-board Planner. This took the form of an x-y graph
representing the search depth vs. number of search nodes
visited for each successive step of the plannerÕs search.
The purpose of these plots was to provide a quick
summary of how PS problem solving process. For
example, a trajectory that visits the same depth level
several times while the search node number increases
indicates that the planner is backtracking. The persistence
of this situation for a large number of steps is an
indication that PS may be thrashing and that it will be
unlikely to return a solution within the allotted amount of
time. Another useful use of the PS Graph plots is the
comparison of telemetry data trajectories generated during
simulation runs of the ground planner twin.

Figure 24: PS Graph (planner progress) display

Although very simple, we were surprised by the power of
summarization of this tool and the level of insight that it
could provide both during development of  RA and during
operations in a situation of stress. As we will discuss in
the flight experiment section, PSGraph allowed us to
monitor an unexpected situation with PS and to quickly
identify the likely cause of the problem. In the future, it
will be advisable to design several simple visualizations
like PS Graph for the reduced ground team supporting an
autonomy mission.

Stanley and MIR

A version of MIR was also run on the ground.  The
purpose of this was to infer MIRÕs full internal
representation of the spacecraft state from the telemetry
which contained a much smaller subset.  Specifically, it
contained the set of independent variables in MIRÕs
spacecraft model. The Stanley ground tool displayed a
hierarchical schematic of the spacecraft's on-board
components whose status was driven by the ground MIR
(see Fig. 7).

Components could be opened to show more detail or
closed. The states displayed were blue (ok - powered off),
green (ok - powered on), yellow (recoverable failure),
purple (degraded failure), and red (permanent failure).
Since Stanley assigned colors to all states, nominal as
well as off nominal, it allowed the user to tell at a glance
the conditions of the devices.  Stanley did not address the
issue of displaying continuous values, such as a battery
state of change.
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Figure 25: Stanley (hardware status) display

In addition to the color changes, detected component
faults were reported by popping up an alert box.  The alert
box allowed the user to click on an entry, resulting in the
schematic being opened down to the appropriate
hierarchical level to show the local context of the fault.
Histories of all state changes, important or not, were
available at any time by clicking on components.

Predicted EventsÑIn flying an autonomous agent, like
the RA, ground operators observing the spacecraft state
via its telemetry, may not be in a position to know when
certain events are to take place precisely. It was
nevertheless important to have a prediction of when the
RA planned to take various actions, so that the
appropriate subsystem stations at the mission operations
center could be staffed for observability. We therefore,
generated a Predicted Events File (PEF) file which
reported both the low-level commands RA would issue
together with the high-level actions RA was asked to take.
during plan execution onboard the spacecraft.

Public Outreach via the WebÑ
Emailed summaries of events onboard presented in simple
English and a Java applet timeline display on the web,
patterned after ExecView, were two additional tools to
present RA's progress to the public.. These tools are
interesting because they required an even higher target for
simplicity and understandability than did the flight
controllers's tools.

Several recent missions have used pagers and email to
deliver notifications to the mission operations team.  The
DS1 ground system, for instance, alerted operators by
pager when a given measurement strayed outside a preset
range or when fault protection telemetry went into an
unusual state.  We took this a step further in RAX by
producing descriptions of important events in common
English.  See Figure 12 for an example.  The summarized
descriptions were automatically posted to the RAX web
site (http://rax.arc.nasa.gov) and emailed in batches to a

public mailing list.  2000 subscribers received this email
during RAX.  Terse descriptions were also sent to team
members' alphanumeric pagers via email.

We also provided an alternative description of Remote
Agent activity (Figure 14) using horizontal timelines
patterned after ExecView.  This was implemented as a
java applet.  The timelines in the top window represented
major kinds of activity (e.g., attitude or camera-related
activity).  Along the timelines were tokens indicating
particular activities (e.g., a turn) in effect reproducing the
plans generated onboard on a userÕs web browser. Also
included were controls to step through the timelines and
an event-based summary similar to that provided in email.
The most interesting feature of this applet was its ability
to show what RA planned to do at any point in the
experiment by selecting the event that occurred at that
time.  This is interesting because the plan changed several
times due to simulated faults.  Thus it provided an
historical overview of RA's re-planning activity and
recreated for the general public conditions onboard the
spacecraft.

Due to time pressure, the outreach tools were designed to
handle the nominal scenario only (including the simulated
faults).  They did not accurately reflect the RAX software
problems that occurred.  They did, however, summarize
activity during the new scenario without modification.
These summaries are still available at the RAX web site at
http://rax.arc.nasa.gov.

Figure 26: Timeline applet

  Additional details on the RAX Ground Tools can be
found in [14].

Flight Test

RAX was scheduled to be performed on DS1 during a
three week period starting May 10, 1999. This period
included time to retry the experiment in case of
unexpected contingencies. On May 6, 1999, DS1
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encountered an anomaly that led to spacecraft safing.
Complete recovery from this anomaly took about a week
of work by the DS1 team, both delaying the start of RAX
as well as taking time away from their preparation for the
asteroid encounter in July, 1999. In order not to
jeopardize the encounter, the DS1 project also decided to
reclaim the third RAX week for encounter preparation,
leaving only the week of May 17th, 1999, for RAX.
However, to maximize the time to try the more important
2-day experiment, they agreed to go ahead with the 2-day
experiment without first doing the confidence building
12-hour experiment. This decision was strong evidence
that the DS1 project had already developed significant
confidence in RAX during pre_flight testing.

Flight Test Part 1Ñ The flight experiment started on
Monday, May 17th, 1999. At 11:04 am PDT, we received
a telemetry packet that confirmed that the two days RAX
scenario had started on DS1.  Shortly thereafter, PS
started generating the first plan.  The first plan was
generated correctly, but not before an unexpected
circumstance created some apprehension in us.

Fig. 7 graphically describes the situation with the output
of our Plangraph ground tool. The blue trajectory relates
to a Papabed test that we ran on May 16th, 1999 under
identical condition to those of the flight test. The green
trajectory describes what happened during flight. The
deviation in the green trajectory from the 45 degrees,
diagonal trajectory means that PS in flight backtracked
significantly more than on Papabed. Since the conditions
on the spacecraft were believed to be practically identical
to those on the ground testbeds, there was no apparent
reason of for this discrepancy.  Subsequently, the cause
for this discrepancy was traced back to the spacecraft and
Papabed differing on the contents of the AutoNAV file
containing asteroid goals. Therefore, in flight PS was
actually solving a slightly different problem than it had
solved on the ground!  Thus, this unexpected
circumstance allowed us to demonstrate that PS problem
solving was robust to last minute changes in the planning
goals, increasing the credibility of the autonomy
demonstration.

The two days scenario continued smoothly and
uneventfully with the simulated MICAS switch failure,
the resulting replan, long turns to point the camera at
target asteroids, optical navigation imaging during which
no communication with DS1 was possible, and the start of
IPS thrusting.
However, around 7:00 am on Tuesday, May 18, 1999, it
became apparent that RAX had not commanded
termination of IPS thrusting as expected.  Although plan
execution appeared to be blocked, telemetry indicated that
RAX was otherwise healthy.  The spacecraft too was
healthy and in no apparent danger. The decision was
made to use EXEC's ability to handle low-level
commands to obtain more information regarding the
problem. Once enough information had been gathered, the

decision was made to stop the experiment. By this time an
estimated 70% of the RAX validation objectives had
already been achieved.

Troubleshooting and RecoveryÑBy late Tuesday
afternoon the cause of the problem was identified as a
missing critical section in the plan execution code.  This
created a race condition between two EXEC threads.  If
the wrong thread won this race, a deadlock condition
would occur in which each thread was waiting for an
event from the other.  This is exactly what happened in
flight, though it had not occurred even once in thousands
of previous races on the various ground platforms.  The
occurrence of this problem at the worst possible time
provides strong impetus for research on formal
verification of flight critical systems.  Once the problem
was identified, a patch was quickly generated for possible
uplink.

Following the discovery of the problem, we generated a
6-hour RAX scenario to demonstrate the remaining 30%
of the RAX validation objectives. This scenario included
IPS thrusting, three failure scenarios, and back-to-back
planning.  This new scenario was designed, implemented,
and tested, together with the patch, on papabed overnight
within about 10 hours.  This rapid turn around allowed us
to propose a new experiment at the DS1 project meeting
on Wednesday.  The DS1 project decided to proceed with
the new scenario. However, they decided not to uplink the
patch, citing insufficient testing to build adequate
confidence.  In addition, based on the experience on
various ground testbeds, the likelihood of the problem
recurring during the 6 hour test was deemed to be very
low.  Nonetheless, we developed and tested a contingency
procedure that would enable us to achieve most of our
validation objectives even if the problem were to recur.

The DS1 project's decision not to uplink the patch is not
surprising.  What was remarkable was their ready
acceptance of the new RAX scenario.  This is yet more
evidence that the DS1 project had developed a high level
of confidence in RA and its ability to run new mission
scenarios in response to changed circumstances.  Hence,
although caused by an unfortunate circumstance, this
rapid mission redesign provided unexpected validation for
RA.

RAX Flight Part 2ÑThe 6-hour scenario was activated
Friday morning.  The scenario ran well until it was time to
start up the IPS. Unfortunately, an unexpected problem
occurring somewhere between the flight software and the
RAX Manager caused a critical monitor value to be lost
before it reached RA.  The cause of this message loss has
not been determined. The problem of lost monitor values
could have been avoided with periodic refreshes of the
monitor values. This was deemed out of scope for the
purposes of the experiment, and RA was known to be
vulnerable to message loss.  This vulnerability led RAÕs
estimation of the IPS state to diverge from the true state.
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Fortunately, the discrepancy proved to be benign.  Hence,
RA was able to continue executing the rest of the scenario
to achieve the rest of its validation objectives.

By executing the two flight scenarios, RAX achieved
100% of its validation objectives.

Effectiveness of the development and test
process

Progress in development and testing during the RAX
project can be analyzed through the Problem Reports (PR)
filed between April 1997 and April 1999.

Subsystem Number of PRs

Planner/Scheduler 233

Executive 100

MIR 85

RAX Manager 22

System 77

Communication 22

Simulator 30

Others 11

Total 580

Table 12: Number of PRs by subsystem

A developer or a tester could file a PR, usually reporting a
bug, or requesting a change in the software behavior. A
few PRs were reminders of activities or checks to be
performed. PRs  remained open until the developers
addressed them. When a resolution to the report was filed
(e.g., a bug fix was provided), the originator of the report
would check the validity of the resolution. If accepted the
resolution was included in a formal release. A few PRs
were suspended. This meant that the risk of the problem
was assessed and considered acceptable within the limits
of the RAX experiment.

Figure 33gives an idea of the temporal distribution of new
PRs filed over the duration of the project. The last four
columns (from January 1999 to April 1999) relate to
problems that were submitted to the Change Control
Board process. Notice that during the number of PRs in
this period is still quite high (91). This depended in part
on the fact that integration with flight software started in
December 1999, with RAX running on Papabed, and that
until then RA had only been operating interacting with
low fidelity simulators.
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Figure 33: Temporal distribution of Problem Reports

PRs can be divided in three categories.

•  Modeling PRs required by changes in the
domain specific knowledge relative to the DS1
spacecraft subsystems;

•  Engine PRs affecting the core reasoning engines
of RA

•  Other PRs related to other mechanisms such as
the format of data file exchanged between RA
components. This category also includes
reminders and requests of change that were
outside the scope of RAX

Figures 16, 17 and 18 describe the distribution of
problems by category for each individual engine. The
most stable RA subsystem was MIR. This stability
manifested itself both in terms of the total number of
Engine and Model PRs filed and in terms of the very few
PRs of these categories filed in the last 4 months of the
project. This was due both to the maturity of the MIR
technology and to the fact that the problem addressed by
MIR changed very little during the duration of the project.
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Figure 34: Planner PRs by category
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Figure 35: Executive PRs by category

The command language used by EXEC, ESL, was
developed prior to the RAX project and caused a
negligible number of PRs.  The majority of the EXEC
PRs fell into the Other category and were related to
integrating the PS and MIR modules.  The next largest
category of PRs were model related.  These tended to
manifest themselves each time RA was integrated on a
higher fidelity testbed. Models for EXEC were
undergoing modifications quite late (Feburary to April
1999). This was primarily due to the fact that these
months covered a period of intense activity on Papabed
with the interfaces with the details of how flight software
operated being finally communicated to the RAX team.
This resulted in some localized changes in interface
functions and in task decomposition procedures. The
effects of these changes were typically localized at the
EXEC level and did not propagate up to PS models. This
confirms the possibility of developing RA even on the
basis of an accurate but abstract characterization of the
modeled system, with much of the high-level behaviors
remaining stable when further details on the behavior of
the system are known
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 Figure 36: MIR PRs by category

Both in the case of MIR and EXEC, testing was very
effective at validating models. EXEC and MIR models
have many non-interacting or loosely interacting
components that can be tested independently. This
reduces the number of test cases that are needed. Testing
small components of the model independently like we did
in RAX should scale-up to larger models for future
science missions.

In the case of PS , a larger overall percentage of the PRs
(about 45%) was model related. More importantly, a large
number of new problems was discovered during the last
four months of the project, after the formal testing process
had ended. The vast majority of these problems consisted
of PS operating correctly but being unable to find a plan
within the allocated time limit since its search was
``thrashing''.  These problems were particularly serious
since they could easily arise in off-nominal situations
during flight.

There were several reasons for this situation:

1. The ranges of some parameters turned out to be
different than those assumed by PS testing, e.g.,
PS testing assumed turn durations were at most
20 minutes, while actual turns could take over an
hour.  This created stress situations not
considered by formal PS testing.

2 .  Planning problems became more challenging
when we transitioned from the 6 day scenario to
the 2 day scenario.  The temporal compression
led to the disappearance of slack time between
activities.  In the 6 day scenario PS could exploit
this slack to achieve subgoals without
backtracking.  In the 2 day scenario backtracking
became necessary, revealing additional
brittleness in the PS chronological backtracking
search.

3. A more fundamental issue was the independence
between the PS test generator and the structural
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characteristics of the domain model.  This led to
the test generator missing a number of stress
cases.  For example, one problem depended upon
the specific values of three continuous
parameters: the time to start up the IPS engine,
the time to the next optical navigation window,
and the duration of the turn from the IPS attitude
to the first asteroid.  An equation relating these
parameters can crisply characterize the stress
situations.  Unfortunately, automatically
generated test cases based on covering pair-wise
interactions of parameter values cannot reliably
detect such problems.

Given the late date at which these new problems were
discovered, it was not feasible to modify the test suite to
test extended variations around the new baseline.  Instead,
we focused on just the most crucial variation: the time at
which replans might occur.  The objective was to ensure
that the planner was robust to any re-planning
contingency.  Two steps were needed to accomplish this.
First, the new 2 day scenario was designed to guarantee
that the harmful constraint interactions of the PS domain
model would be avoided under any hypothetical
replanning contingency.  The idea was to ensure that PS
could always return a plan within the given time limit.
Second, a new PS test suite was carefully designed and
run to ensure that this was indeed the case.

The design methodology for this new PS test suite is
instructive. Exhaustive generation of all possible plans
was clearly impossible. Instead, using our knowledge of
the PS model, we manually identified boundary times at
which the topology of the plans would change.  We
identified 25 such boundary times and generated a total of
88 test cases corresponding to plans starting at, near, or
between boundary times.  This led to the discovery of two
new bugs.  Furthermore, analysis of the test results
showed that PS would fail to find a plan at only about
0.5% of all possible start times.  Although the probability
of this failure was extremely low, contingency procedures
were developed to ensure that the experiment could be
successfully continued even if this PS failure actually
occurred.

We used the above test suite design methodology only
toward the end of RAX, after the PS model and code had
been frozen.  However, we believe that this (currently
manual) analysis method can be generalized and extended
to provide an automatic PS testing procedure throughout
the development process for new application domains.

Note that the number of PRs regarding the reasoning
engines of PS, EXEC and MIR was relatively small. For
example, less than 10% of PSÕs PRs were Engine related
and the last was filed in September 1998. However, the
bug in EXEC encountered during the flight experiment
shows that our engine validation methodology could have

improved. In fact, our testing was primarily focused on
validating the knowledge in the domain models. Tests
were selected to exercise the domain models. By
exercising the RA on these test scenarios, we effectively
tested the domain models and engines as a unit. However,
especially for concurrent systems such as EXEC, a much
better approach is to thoroughly formally validating the
logic of the engines through the use of formal methods [].
Although expensive, this form of testing can give high
level of quality assurance on the core of the RA
technology. Moreover, since the engines remain
unchanged over a large number of applications, the cost
of this testing can be amortized across several missions.

Costing

Figure 37 below gives an overall view of the costing of
the Remote Agent Experiment starting from October 1997
when tracking information was available.The figure
describes costs based on development, testing, integration
and technical management activities. And on the Y axis
we show the Full Time Equivalence (FTE')  exerted.
Costing by FTE's is more appropriate in this case because
of the differing accounting standards used at NASA ARC
and JPL.

The chart clearly shows the distinct development and
testing and integration efforts being partitioned in time;
development efforts were clearly focused before the move
to the high-fidelity testbeds. And while testing and
integrations efforts were ongoing activities, the came to
dominate the latter part of the move to the testbeds. While
the overall trend is a curve with diminishing figures, there
are some features that need some explanation.

The first peak in the Oct-Dec 97 timeframe corresponds
to the time when formal test plans were put together and
UNIX testing began. In addition the RAX Manager was
also delivered to the fight team at this time. The peak
therefore, is categorized by these  efforts and the resulting
testing and bug fixing that took place.

The second peak in the Aug-Oct 98 timeframe
corresponds to a number of events. Primarily this was
dealing with new code deliveries to the planner engine to
allow the EXEC to deal more robustly with additional
information in the plans. This increased effort highlights
the extra individuals from outside the RA team  who
made these efforts possible. In addition all team members
were gearing up towards testing on the papabed, the
highest fidelity testbed available at that time.  Subsequent
to that event, the curves show a deep decline, as expected,
in the development efforts when the team focused more
on integration and testing on the various testbeds
available. Efforts dealing with integration therefore show
a perceptible increase.
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Figure 37. Remote Agent Costing

Lastly, the gap between the testing and integration efforts
appears to be inverted in the December 98 and May 99
timeframe. The primary reason for this was our late
arrival on the high-fidelity testbeds. This resulted in our
efforts to be redoubled with integrating on these testbeds.
It was also the case that working on these testbeds took
time and effort beyond what was necessary on the lower
fidelity testbeds (Unix and babybeds) that were available
early on. Training and detecting problems with the
configuration also took up a substantial portion of our
time and effort resulting in a larger manpower effort for
integration as shown.

Scaling Up

The Remote Agent experiment demonstrated all the
capabilities of the RA, but the domain models encoded
only what was needed for the experiment scenario. This
was  a small fraction of what would be needed to
command all aspects of a complete science mission.

Future missions can expect that their modeling effort will
exceed those of the RA experiment, though it is difficult
to say what the scaling factor might be. Validation of the
models also benefited from a reduced scope. We were
able to focus our efforts on a single scenario and related
variants. To apply the same methods to a full science
mission will require either significantly more testing
resources or more effective validation methods.

The time needed to generate plans will probably increase
for future science missions, though that depends on plan
complexity and CPU speed. The RAX plans were
relatively simple, consisting of 15-25 executable
activities, 50Ð80 tokens and 90Ð134 constraints. They
took 50-90 minutes to generate using about 25% of the
RAD6000 CPU.  Generation time for more complex plans
can be expected to scale roughly linearly with plan
complexity (tokens and constraints). Plan complexity
depends on the length of the plan and the goals that the
plan is asked to achieve, both of which are under control
of the operations team.

Plan generation time determines how quickly the RA can
respond to failures and external events. If the re-plan
duration is too long, the RA may not be able to generate a
new plan in time.  During normal operations the planning
duration is far less important since the next plan can be
generated while the current one is executing.

The remote agent reasoning engines achieved all of their
validation objectives, and demonstrated all of their key
capabilities. The RA as a whole demonstrated that it can
command a spacecraft and respond robustly to failures.
Future missions can expect that these capabilities will
perform equally well on a full-scale science mission.

Lessons Learned

The RA team learned valuable lessons in a number of
areas including RA technology and processes, tools,  and
even autonomy benefits to missions.

Robustness of the Basic SystemÑModel validation alone
does not suffice; the rest of the system, including the
underlying inference engines, the interfaces between the
engines, and the ground tools, must all be robust.  Given
our resource constraints, we made the decision to focus
our formal testing on model validation, with engine and
interface testing happening as a side effect.  This was a
reasonable strategy: code that has been unchanged for
years is likely to be very robust if it has been used with a
variety of different models and scenarios.  However,
newer code does not come with the same quality
assurance.  Furthermore, as the deadlock bug in flight
showed, subtle timing bugs can lay hidden for years
before manifesting themselves.

Conclusion: The primary lesson is that the basic system
must be thoroughly validated with a comprehensive test
plan as well as formal methods, where appropriate, prior
to model development and flight insertion.  Interfaces
between systems must be clean and well specified, with
automatic code generation being used to generate actual
interface code, telemetry, model interfaces, and test cases;
code generation proved to be enormously helpful in those
cases where we did use it.

Robustness of Model Based DesignÑAs mission
development times becomes shorter and mission
objectives become more ambitious, it is less and less
likely that an accurate model of each spacecraft
component will be available early in the flight and ground
software development cycle. Dealing with this uncertainty
is a major problem facing future missions. By
emphasizing qualitative and high-level models of
behavior RA can help solve this dilemma. Qualitative,
high-level models can be captured early in the mission
lifetime and should need only minor adjustments when
the hardware is better understood. Our experience on
RAX essentially confirms this hypothesis. Initial
spacecraft models used by PS, EXEC and MIR were built
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early in the DS1 mission, before April 1997. During the
following year and a half, EXEC and MIR models did not
change and the PS model was only changed in order to
support more efficient problem solving by the search
engine, not in order to reflect new knowledge of the
spacecraft behavior. In the last phase of the experiment
preparation, when communications between the RAX
team and the DS1 team resumed, adjustments were
needed to finalize the interface between the low-level
EXEC primitives and flight software.

Conclusion: Contrary to much concern, the type of
qualitative, high-level models used by the RA requires
little tuning throughout the project.  The usefulness of the
models for software development has been validated.

Model Design, Development and TestÑOne of the
biggest challenges we faced was model validation.  This
was particularly true during validation testing, when even
small changes in the models had to be carefully and
laboriously analyzed and tested to ensure that there were
no unexpected problems.  In fact, in some cases we chose
to forgo a model change, and instead decided to institute
flight rules that would preclude the situation that required
the model change from arising.  A related issue was that
methods do not yet exist to characterize RA's expected
behavior in novel situations.  This made it difficult to
precisely specify the boundaries within which RAX was
guaranteed to act correctly.  While the declarative nature
of RA models was certainly very helpful in ensuring the
correctness of models and model changes, the difficulty
stemmed from unexpected interactions between different
parts of the model, e.g., different parts of the model may
have been built under different, implicit, conflicting
assumptions.

Conclusion: The central lesson we learned here was the
need for better model validation tools.  For example, the
automated test running capability we developed proved to
be enormously helpful, as it allowed us to quickly
evaluate a large number of off-nominal scenarios.
However, scenario generation and evaluation of test
results were time consuming.  In some cases, the
laborious process we followed to validate model changes
has provided us with concrete ideas for developing tools
that would dramatically simplify certain aspects of model
validation. Preliminary work in the area of formal
methods for model validation is also very promising.
Finally, we need to develop better methods for
characterizing RA's behavior with a specific set of
models, both as a way of validating those models and as a
way of explaining the models to a flight team.

Onboard PlanningÑSince the beginning of RA, on-board
planning has been the autonomy technology that most
challenges the comfort level of mission operators.
Commanding a spacecraft with high-level goals and
letting it autonomously take detailed actions is very far
from the traditional commanding approach with fixed-

time sequences of low-level commands. We believe that
during RAX the flawless demonstration of on-board
planning has provided a powerful existence proof of the
feasibility of the approach. Our own discomfort with the
discrepancy between tested behavior and in-flight
behavior of PS during RAX was a surprising mirror of the
objections of the critics of autonomy.

Conclusion: It is difficult to move past the mindset of
expecting complete predictability from the behavior of an
autonomous system. However, RAX has demonstrated
that the paradigm shift is indeed possible. In the case of
PS behavior during RAX, the point is not that the
combination of pictures requested by NAV had never
been experienced before, but that the problem-solving
behavior that the planner used to achieve each individual
picture goal had indeed been tested. Confidence in
complex autonomous behaviors can be built up from
confidence in each individual component behavior.

Design for TestabilityÑSystem-level testing is an
essential step in flight preparation.  Designing the RA to
simplify and streamline system-level testing and analysis
can enable more extensive testing, thus improving
robustness.  In RAX, system-level testing proved to be
cumbersome.  The primary reason for this was the
absence of efficient tools to generate new mission
scenarios, so that all system tests had to be variations on
the nominal scenarios.  Hence, to test a particular
variation, one was forced to run a nominal scenario up to
the point of the variation, e.g., testing thruster failures
during turns required at least 6 hours, since the first turn
occurred about 6 hours into the scenario.

Conclusions: The difficulty of generating new mission
scenarios is easily addressed: a graphical tool allowing
visual inspection and modification of mission profiles, as
well as constraint checking to ensure consistency, can
dramatically simplify the construction of new mission
profiles.  Such a tool is now being constructed.
Nonetheless, overall RA validation is still necessary to
ensure that RA will properly handle each new mission
profile (see below).

Systems Engineering ToolsÑCoding the domain models
required substantial knowledge acquisition, which is a
common bottleneck in Artificial Intelligence systems. It is
better to have the domain expert code the models directly.

Conclusion: Develop tools and simplify the modeling
languages to enable spacecraft experts to encode models
themselves. Employ tools and languages already familiar
to the experts. Organize the models around the domain
(Attitude Control, Power, etc.) rather than around the RA
technology (planner, exec, MIR ).

Mission Profile DevelopmentÑThe RA is commanded by
goals specified in a mission profile. For the experiment,
constructing the profile was a Òblack artÓ that only one or
two people on the RA team could perform. The mission
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planners and operations personnel must be able to specify
goals themselves.

Conclusion: Simplify specification of goals. When
possible, use approaches already familiar to mission
planner, such as graphical timeline displays and time-
ordered listings. Provide automated consistency checking.

Adaptability to Late Model ChangesÑThe spacecraft
requirements and operating procedures change throughout
development, and even after launch. We were unable to
encode late changes, due to the regression-testing
overhead that each change required.

Conclusions: The validation cost of model-changes must
be reduced. Some possibilities include tools to evaluate
the consequences of model changes on testing. The
models already support localized changes. Procedures are
needed to uplink and install just those changes.

Ground ToolsÑGround tools ought to be developed well
in advance of the actual flight and be used as a primary
means to test and understand how to operate complex
systems. Given the late date of development of most of
the ground tools, a good many of them felt not well
integrated. As a result only the tools displaying or
interpreting data in the most obvious way were of high
value.

TelemetryÑIn addition to an on-board textual log file
downlinked at the end of the experiment or on request,
RAX sent a stream of binary telemetry packets, one for
each significant event, that were displayed as color-coded
text on the ground.  Among other things, the telemetry
allowed us to monitor all on-board communication among
RAX modules and between RAX and the flight software.
This proved valuable in allowing us to quickly diagnose
the anomalies that occurred.  We immediately knew that
the reason RAX had failed to turn off the ion engine was
that it had stopped executing the plan in some
unanticipated manner; we knew RAX was still running
and could also rule out a plan abort or a failure to send
just one command. Similarly, we immediately narrowed
down the second anomaly to a monitor message that was
either not sent or not received.

Conclusion: Ensuring sufficient visibility on all
platforms, including in flight, requires adequate
information in telemetry.  The best way to ensure this is to
design the telemetry early, and to use it as the primary, if
not the only, way of debugging and understanding the
behavior of the system during integration, test, and
operations.

Team Structure for RA Model DevelopmentÑThe RAX
team was structured horizontally along engine boundaries.
See Table 2. This meant that team members specialized in
one of the PS, EXEC, and MIR engines, and each team
was responsible for modeling all spacecraft subsystems
for their engine.  This horizontal organization was
appropriate for RAX, since it was our first major
experience in modeling spacecraft subsystems for flight.

Hence, it made sense for engine experts to do all
modeling for their engine.  However, this organization has
several shortcomings.  Perhaps the most significant
shortcoming was that knowledge of any one spacecraft
subsystem (e.g., attitude control, ion propulsion, MICAS
camera) was distributed across the three teams; one
needed discussions with three individuals to get a
complete understanding of how a subsystem was
commanded by RA.

Conclusions: These shortcomings suggest an alternate
structuring for a future SW team. Instead of a horizontal
structure, teams might be organized vertically along
spacecraft subsystem or domain unit boundaries; e.g., a
single team would be responsible for developing all
models for the attitude control system.  This would ensure
internal coherence of the resulting model.  Furthermore,
since modelers would need to understand how to use all
three engines, they can make well motivated decisions on
how best to model a subsystem to exploit the strengths of
each engine and avoid information duplication.

While a vertical team organization has its benefits, certain
aspects of model development intrinsically involve
managing and reasoning about global constraints, e.g.,
power allocation strategies, system-level fault protection.
Hence, it is important to involve systems engineers to
develop these global strategies.

FUTURE APPLICATIONS

Future work regarding Remote Agent can be divided into
three categories: fundamental improvements in the
capabilities of its components, improvements in usability
or deployability, and upcoming demonstrations or
applications. Since the experiment a significant effort has
gone into basic research to improve future iterations of
Remote Agent. For example, more capable version of
Livingstone has been developed that better handles
ambiguity when tracking the state of the spacecraft.
Livingstone now tracks a number of most likely states the
spacecraft could be in, given the observations it has
received thus far.  If new observations invalidate the
possible states MIR considered most likely, it re-analyzes
the commands that have been given and the possible
failures in order to determine which previously unlikely
states now explain the unexpected observations.

PS has a number of efforts underway to improve the
underlying software implementation - it now has a new
modular software architecture which allows plugging in
of various search techniques in the engine, work is
underway in model analysis which will allow early
detection of domain model inconsistencies, analysis of
static models is also being undertaken to automatically
generate search control instrumentation. The latter
approaches will allow rapid prototype development of
planner models by non-technologists using incremental



34

model development via "what-if" analysis to vastly reduce
development costs. It will also provide mission staff with
a better understanding of how autonomy architectures will
fit into the overall design of the FSW.

Other efforts are also in place to redesign the system
architecture to allow the EXEC access to the planner
temporal database and algorithms. A unified modeling
language is being developed with cleaner semantics to
allow EXEC to respond to exogenous events more
rapidly.

Applying Remote Agent to the Deep Space 1 spacecraft
provided a wealth of practical lessons about what was
needed to create a sustainable autonomy engineering
process and make this technology usable for main-line
mission development and operations. PS and MIR have
been re-architected, modularized and implemented in C++
rather than Lisp.  These next-generation versions are in
alpha testing at the date of this report. EXEC is expected
to be re-architected and implemented in C by the end of
calendar year 2000. The Remote Agent team is now
developing tools for graphically creating and debugging
models, for automating much of the integration of Remote
Agent with traditional flight software, and for allowing
humans and autonomous software to interact more easily.
The team is collaborating with software verification
researchers at NASA Ames Research Center and
Carnegie-Mellon University to allow certain Remote
Agent models to be analyzed to prove they cannot
recommend undesired behavior. In short these research
and development efforts are designed to make the Remote
Agent and similar technologies more capable, easier to
use, and easier to test and validate.

Remote Agent technology is successfully being
transferred beyond the original team and several groups
are currently building prototypes with Remote Agent in
order to evaluate it. At NASAÕs Kennedy Space Center,
Remote Agent applications are being developed to
evaluate RA for missions involving in-situ propellant
production on Mars on the 2003 lander or a future piloted
mission. Applications for shuttle operations are being
pursued as well. At the Jet Propulsion Laboratory,
Remote Agent is being evaluated as the baseline
autonomy architecture for the Origins Program
Interferometry Instruments and is being used in the JPL
interferometry testbed. The New Millennium ProgramÕs
Deep Space Three, a space-based interferometry mission
which includes two or three spacecraft cooperating to take
science observations, may be one early customer of this
development.  At Johnson Space Center, components of
Remote Agent are being integrated into an ecological life
support testbed for human missions beyond Earth orbit.
At Ames Research Center, Remote Agent technology is
being incorporated into software for more robustly
controlling planetary rovers. Working with Orbital
Sciences Corporation, Ames is working to demonstrate
Remote Agent as it applies to streamlining the checkout
and operation of a reusable launch vehicle. This

demonstration will fly on the X-34 vehicle.  A similar
experiment will be flown on the X-37 vehicle in
collaboration with Boeing.
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Appendix A: Telemetry Channels
The bulk of RAX monitoring and validation during the experiment was from the RAX telemetry on APID 9 & 10, channels
W-500 to W-570, and the downlinked log files.

Channel Mnemonic
W-500 - W-570   (RAX channels)
P-0300 LPE_PASM_mgr
APID 9 & 10 Monitored RAX behavior. Packets were in a RAX-specific format.
APID 45 Log files downlinked after the experiment (plan files and detailed execution trace).

The following channels were also activated for RAX:

Channel Mnemonic
F-1048 FaultEnaStat
F-1052 BusSCstatus
F-1055 IPS_SCstatus
F-1057 PDS_SCstatus
F-1058 ACS_SCstatus
F-1060 RAX_SCstatus
F-1063 BusGDstatus
F-1066 IPS_GDstatus
F-1068 PDU_GDstatus
F-1069 ACS_GDstatus
F-1071 RAX_GDstatus
D-0149 buf_pkt_09
D-0150 sent_pkt_09
D-0165 buf_pkt_10
D-0166 sent_pkt_10
F-0716 - F-0727

Appendix B: DS1 Technology Validation Power On Times
•  The Remote Agent Experiment first ran from May 17, 1999, 5am PST to Wed 5/18/99, 7pm PST.
•  It ran again from May 21, 1999, 7:15am PST to 1:30 pm PST (RAX_STOP).

•  The log files were downlinked by May 21, 1999 4:00 PST.

Appendix C: Acronym Definitions

AutoNAV ............Autonomous Navigation subsystem of FSW

ACS......................Attitude Control Subsystem of FSW

APE......................Attitude Planning Expert subsystem of FSW

ARC .....................Ames Research Center

CCB .....................Change Control Board

CPU......................Central Processing Unit (computer)

DDL .....................PS Domain Description Language

DMD....................**** not defined in paper

DS1 ......................Deep Space One spacecraft
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DSN .....................Deep Space Network

ESL ......................Executive Support Language

EXEC...................Remote Agent Smart Executive

FTE ......................Full Time Equivalent

FSW .....................DS1 Flight Software

GMT ....................Greenwich Mean Time

HGA.....................High Gain Antenna  *** not defined in paper

HSTS....................********not defined in paper

HV........................High Voltage   ******not defined  in paper

IPCO_RAXO.......**** not defined in paper

IPS........................Ion Propulsion System

IRS .......................Incremental Refinement Scheduler

JPL .......................Jet Propulsion Laboratory

LGA .....................Low Gain Antenna  *** not defined in paper

MGDS..................*** not defined in paper

MICAS.................Miniature Integrated Camera And Spectrometer

MI.........................Mode Identification component of MIR

MIR......................Remote Agent Mode Identification and Recovery module (Livingstone)

MR .......................Mode Recovery component of MIR

MM ......................Remote Agent Mission Manager module

NASA ..................National Aeronautics and Space Administration

NewMAAP..........New Millennium Autonomy Architecture rapid Prototype

OD........................Orbit Determination

OPNAV ...............Optical Navigation Module subsystem FSW

PASM ..................*** not defined in paper

PEF ......................Predicted Events File

PEPE....................**** not defined in paper

PR.........................Problem Report

PS.........................Remote Agent Planner/Scheduler

RA........................Remote Agent

RAX.....................Remote Agent Experiment

RAXM .................RAX Manager

RT ........................Remote Terminal

SSA......................*** not defined in paper

TDB .....................HSTS Temporal Database

TCV .....................Thrust Vector Control   *** not defined in paper

UV........................Under Voltage  ***** not defined in paper



39

                                                                                                                                                                                                                  


